mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-14 11:36:24 +03:00
37c7c85a86
* Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
129 lines
3.9 KiB
Python
129 lines
3.9 KiB
Python
# coding: utf8
|
|
from __future__ import unicode_literals, division, print_function
|
|
|
|
import plac
|
|
from timeit import default_timer as timer
|
|
from wasabi import Printer
|
|
|
|
from ._messages import Messages
|
|
from ..gold import GoldCorpus
|
|
from .. import util
|
|
from .. import displacy
|
|
|
|
|
|
@plac.annotations(
|
|
model=("Model name or path", "positional", None, str),
|
|
data_path=("Location of JSON-formatted evaluation data", "positional", None, str),
|
|
gold_preproc=("Use gold preprocessing", "flag", "G", bool),
|
|
gpu_id=("Use GPU", "option", "g", int),
|
|
displacy_path=("Directory to output rendered parses as HTML", "option", "dp", str),
|
|
displacy_limit=("Limit of parses to render as HTML", "option", "dl", int),
|
|
)
|
|
def evaluate(
|
|
model,
|
|
data_path,
|
|
gpu_id=-1,
|
|
gold_preproc=False,
|
|
displacy_path=None,
|
|
displacy_limit=25,
|
|
):
|
|
"""
|
|
Evaluate a model. To render a sample of parses in a HTML file, set an
|
|
output directory as the displacy_path argument.
|
|
"""
|
|
msg = Printer()
|
|
util.fix_random_seed()
|
|
if gpu_id >= 0:
|
|
util.use_gpu(gpu_id)
|
|
util.set_env_log(False)
|
|
data_path = util.ensure_path(data_path)
|
|
displacy_path = util.ensure_path(displacy_path)
|
|
if not data_path.exists():
|
|
msg.fail(Messages.M034, data_path, exits=1)
|
|
if displacy_path and not displacy_path.exists():
|
|
msg.fail(Messages.M035, displacy_path, exits=1)
|
|
corpus = GoldCorpus(data_path, data_path)
|
|
nlp = util.load_model(model)
|
|
dev_docs = list(corpus.dev_docs(nlp, gold_preproc=gold_preproc))
|
|
begin = timer()
|
|
scorer = nlp.evaluate(dev_docs, verbose=False)
|
|
end = timer()
|
|
nwords = sum(len(doc_gold[0]) for doc_gold in dev_docs)
|
|
results = {
|
|
"Time": "%.2f s" % end - begin,
|
|
"Words": nwords,
|
|
"Words/s": "%.0f" % nwords / (end - begin),
|
|
"TOK": "%.2f" % scorer.token_acc,
|
|
"POS": "%.2f" % scorer.tags_acc,
|
|
"UAS": "%.2f" % scorer.uas,
|
|
"LAS": "%.2f" % scorer.las,
|
|
"NER P": "%.2f" % scorer.ents_p,
|
|
"NER R": "%.2f" % scorer.ents_r,
|
|
"NER F": "%.2f" % scorer.ents_f,
|
|
}
|
|
msg.table(results, title="Results")
|
|
|
|
if displacy_path:
|
|
docs, golds = zip(*dev_docs)
|
|
render_deps = "parser" in nlp.meta.get("pipeline", [])
|
|
render_ents = "ner" in nlp.meta.get("pipeline", [])
|
|
render_parses(
|
|
docs,
|
|
displacy_path,
|
|
model_name=model,
|
|
limit=displacy_limit,
|
|
deps=render_deps,
|
|
ents=render_ents,
|
|
)
|
|
msg.good(Messages.M036.format(n=displacy_limit), displacy_path)
|
|
|
|
|
|
def render_parses(docs, output_path, model_name="", limit=250, deps=True, ents=True):
|
|
docs[0].user_data["title"] = model_name
|
|
if ents:
|
|
with (output_path / "entities.html").open("w") as file_:
|
|
html = displacy.render(docs[:limit], style="ent", page=True)
|
|
file_.write(html)
|
|
if deps:
|
|
with (output_path / "parses.html").open("w") as file_:
|
|
html = displacy.render(
|
|
docs[:limit], style="dep", page=True, options={"compact": True}
|
|
)
|
|
file_.write(html)
|
|
|
|
|
|
def print_progress(itn, losses, dev_scores, wps=0.0):
|
|
scores = {}
|
|
for col in [
|
|
"dep_loss",
|
|
"tag_loss",
|
|
"uas",
|
|
"tags_acc",
|
|
"token_acc",
|
|
"ents_p",
|
|
"ents_r",
|
|
"ents_f",
|
|
"wps",
|
|
]:
|
|
scores[col] = 0.0
|
|
scores["dep_loss"] = losses.get("parser", 0.0)
|
|
scores["ner_loss"] = losses.get("ner", 0.0)
|
|
scores["tag_loss"] = losses.get("tagger", 0.0)
|
|
scores.update(dev_scores)
|
|
scores["wps"] = wps
|
|
tpl = "\t".join(
|
|
(
|
|
"{:d}",
|
|
"{dep_loss:.3f}",
|
|
"{ner_loss:.3f}",
|
|
"{uas:.3f}",
|
|
"{ents_p:.3f}",
|
|
"{ents_r:.3f}",
|
|
"{ents_f:.3f}",
|
|
"{tags_acc:.3f}",
|
|
"{token_acc:.3f}",
|
|
"{wps:.1f}",
|
|
)
|
|
)
|
|
print(tpl.format(itn, **scores))
|