mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	* ensure Language passes on valid examples for initialization * fix tagger model initialization * check for valid get_examples across components * assume labels were added before begin_training * fix senter initialization * fix morphologizer initialization * use methods to check arguments * test textcat init, requires thinc>=8.0.0a31 * fix tok2vec init * fix entity linker init * use islice * fix simple NER * cleanup debug model * fix assert statements * fix tests * throw error when adding a label if the output layer can't be resized anymore * fix test * add failing test for simple_ner * UX improvements * morphologizer UX * assume begin_training gets a representative set and processes the labels * remove assumptions for output of untrained NER model * restore test for original purpose
		
			
				
	
	
		
			151 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			151 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from typing import Callable
 | 
						|
import warnings
 | 
						|
from unittest import TestCase
 | 
						|
import pytest
 | 
						|
import srsly
 | 
						|
from numpy import zeros
 | 
						|
from spacy.kb import KnowledgeBase, Writer
 | 
						|
from spacy.vectors import Vectors
 | 
						|
from spacy.language import Language
 | 
						|
from spacy.pipeline import Pipe
 | 
						|
from spacy.util import registry
 | 
						|
 | 
						|
from ..util import make_tempdir
 | 
						|
 | 
						|
 | 
						|
def nlp():
 | 
						|
    return Language()
 | 
						|
 | 
						|
 | 
						|
def vectors():
 | 
						|
    data = zeros((3, 1), dtype="f")
 | 
						|
    keys = ["cat", "dog", "rat"]
 | 
						|
    return Vectors(data=data, keys=keys)
 | 
						|
 | 
						|
 | 
						|
def custom_pipe():
 | 
						|
    # create dummy pipe partially implementing interface -- only want to test to_disk
 | 
						|
    class SerializableDummy:
 | 
						|
        def __init__(self, **cfg):
 | 
						|
            if cfg:
 | 
						|
                self.cfg = cfg
 | 
						|
            else:
 | 
						|
                self.cfg = None
 | 
						|
            super(SerializableDummy, self).__init__()
 | 
						|
 | 
						|
        def to_bytes(self, exclude=tuple(), disable=None, **kwargs):
 | 
						|
            return srsly.msgpack_dumps({"dummy": srsly.json_dumps(None)})
 | 
						|
 | 
						|
        def from_bytes(self, bytes_data, exclude):
 | 
						|
            return self
 | 
						|
 | 
						|
        def to_disk(self, path, exclude=tuple(), **kwargs):
 | 
						|
            pass
 | 
						|
 | 
						|
        def from_disk(self, path, exclude=tuple(), **kwargs):
 | 
						|
            return self
 | 
						|
 | 
						|
    class MyPipe(Pipe):
 | 
						|
        def __init__(self, vocab, model=True, **cfg):
 | 
						|
            if cfg:
 | 
						|
                self.cfg = cfg
 | 
						|
            else:
 | 
						|
                self.cfg = None
 | 
						|
            self.model = SerializableDummy()
 | 
						|
            self.vocab = SerializableDummy()
 | 
						|
 | 
						|
    return MyPipe(None)
 | 
						|
 | 
						|
 | 
						|
def tagger():
 | 
						|
    nlp = Language()
 | 
						|
    tagger = nlp.add_pipe("tagger")
 | 
						|
    # need to add model for two reasons:
 | 
						|
    # 1. no model leads to error in serialization,
 | 
						|
    # 2. the affected line is the one for model serialization
 | 
						|
    tagger.add_label("A")
 | 
						|
    nlp.begin_training()
 | 
						|
    return tagger
 | 
						|
 | 
						|
 | 
						|
def entity_linker():
 | 
						|
    nlp = Language()
 | 
						|
 | 
						|
    @registry.misc.register("TestIssue5230KB.v1")
 | 
						|
    def dummy_kb() -> Callable[["Vocab"], KnowledgeBase]:
 | 
						|
        def create_kb(vocab):
 | 
						|
            kb = KnowledgeBase(vocab, entity_vector_length=1)
 | 
						|
            kb.add_entity("test", 0.0, zeros((1, 1), dtype="f"))
 | 
						|
            return kb
 | 
						|
 | 
						|
        return create_kb
 | 
						|
 | 
						|
    config = {"kb_loader": {"@misc": "TestIssue5230KB.v1"}}
 | 
						|
    entity_linker = nlp.add_pipe("entity_linker", config=config)
 | 
						|
    # need to add model for two reasons:
 | 
						|
    # 1. no model leads to error in serialization,
 | 
						|
    # 2. the affected line is the one for model serialization
 | 
						|
    nlp.begin_training()
 | 
						|
    return entity_linker
 | 
						|
 | 
						|
 | 
						|
objects_to_test = (
 | 
						|
    [nlp(), vectors(), custom_pipe(), tagger(), entity_linker()],
 | 
						|
    ["nlp", "vectors", "custom_pipe", "tagger", "entity_linker"],
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
def write_obj_and_catch_warnings(obj):
 | 
						|
    with make_tempdir() as d:
 | 
						|
        with warnings.catch_warnings(record=True) as warnings_list:
 | 
						|
            warnings.filterwarnings("always", category=ResourceWarning)
 | 
						|
            obj.to_disk(d)
 | 
						|
            # in python3.5 it seems that deprecation warnings are not filtered by filterwarnings
 | 
						|
            return list(filter(lambda x: isinstance(x, ResourceWarning), warnings_list))
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("obj", objects_to_test[0], ids=objects_to_test[1])
 | 
						|
def test_to_disk_resource_warning(obj):
 | 
						|
    warnings_list = write_obj_and_catch_warnings(obj)
 | 
						|
    assert len(warnings_list) == 0
 | 
						|
 | 
						|
 | 
						|
def test_writer_with_path_py35():
 | 
						|
    writer = None
 | 
						|
    with make_tempdir() as d:
 | 
						|
        path = d / "test"
 | 
						|
        try:
 | 
						|
            writer = Writer(path)
 | 
						|
        except Exception as e:
 | 
						|
            pytest.fail(str(e))
 | 
						|
        finally:
 | 
						|
            if writer:
 | 
						|
                writer.close()
 | 
						|
 | 
						|
 | 
						|
def test_save_and_load_knowledge_base():
 | 
						|
    nlp = Language()
 | 
						|
    kb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | 
						|
    with make_tempdir() as d:
 | 
						|
        path = d / "kb"
 | 
						|
        try:
 | 
						|
            kb.to_disk(path)
 | 
						|
        except Exception as e:
 | 
						|
            pytest.fail(str(e))
 | 
						|
 | 
						|
        try:
 | 
						|
            kb_loaded = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | 
						|
            kb_loaded.from_disk(path)
 | 
						|
        except Exception as e:
 | 
						|
            pytest.fail(str(e))
 | 
						|
 | 
						|
 | 
						|
class TestToDiskResourceWarningUnittest(TestCase):
 | 
						|
    def test_resource_warning(self):
 | 
						|
        scenarios = zip(*objects_to_test)
 | 
						|
 | 
						|
        for scenario in scenarios:
 | 
						|
            with self.subTest(msg=scenario[1]):
 | 
						|
                warnings_list = write_obj_and_catch_warnings(scenario[0])
 | 
						|
                self.assertEqual(len(warnings_list), 0)
 |