spaCy/spacy/tests/regression/test_issue4030.py
Ines Montani 412dbb1f38
Remove dead and/or deprecated code (#5710)
* Remove dead and/or deprecated code

* Remove n_threads

Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-06 13:06:25 +02:00

51 lines
1.5 KiB
Python

import spacy
from spacy.util import minibatch
from thinc.api import compounding
from spacy.gold import Example
def test_issue4030():
""" Test whether textcat works fine with empty doc """
unique_classes = ["offensive", "inoffensive"]
x_train = [
"This is an offensive text",
"This is the second offensive text",
"inoff",
]
y_train = ["offensive", "offensive", "inoffensive"]
nlp = spacy.blank("en")
# preparing the data
train_data = []
for text, train_instance in zip(x_train, y_train):
cat_dict = {label: label == train_instance for label in unique_classes}
train_data.append(Example.from_dict(nlp.make_doc(text), {"cats": cat_dict}))
# add a text categorizer component
textcat = nlp.create_pipe(
"textcat",
config={"exclusive_classes": True, "architecture": "bow", "ngram_size": 2},
)
for label in unique_classes:
textcat.add_label(label)
nlp.add_pipe(textcat, last=True)
# training the network
with nlp.select_pipes(enable="textcat"):
optimizer = nlp.begin_training()
for i in range(3):
losses = {}
batches = minibatch(train_data, size=compounding(4.0, 32.0, 1.001))
for batch in batches:
nlp.update(
examples=batch, sgd=optimizer, drop=0.1, losses=losses,
)
# processing of an empty doc should result in 0.0 for all categories
doc = nlp("")
assert doc.cats["offensive"] == 0.0
assert doc.cats["inoffensive"] == 0.0