mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-25 08:44:26 +03:00
0ba1b5eebc
* document token ent_kb_id * document span kb_id * update pipeline documentation * prior and context weights as bool's instead * entitylinker api documentation * drop for both models * finish entitylinker documentation * small fixes * documentation for KB * candidate documentation * links to api pages in code * small fix * frequency examples as counts for consistency * consistent documentation about tensors returned by predict * add entity linking to usage 101 * add entity linking infobox and KB section to 101 * entity-linking in linguistic features * small typo corrections * training example and docs for entity_linker * predefined nlp and kb * revert back to similarity encodings for simplicity (for now) * set prior probabilities to 0 when excluded * code clean up * bugfix: deleting kb ID from tokens when entities were removed * refactor train el example to use either model or vocab * pretrain_kb example for example kb generation * add to training docs for KB + EL example scripts * small fixes * error numbering * ensure the language of vocab and nlp stay consistent across serialization * equality with = * avoid conflict in errors file * add error 151 * final adjustements to the train scripts - consistency * update of goldparse documentation * small corrections * push commit * turn kb_creator into CLI script (wip) * proper parameters for training entity vectors * wikidata pipeline split up into two executable scripts * remove context_width * move wikidata scripts in bin directory, remove old dummy script * refine KB script with logs and preprocessing options * small edits * small improvements to logging of EL CLI script
140 lines
4.9 KiB
Python
140 lines
4.9 KiB
Python
# coding: utf-8
|
|
"""Script to process Wikipedia and Wikidata dumps and create a knowledge base (KB)
|
|
with specific parameters. Intermediate files are written to disk.
|
|
|
|
Running the full pipeline on a standard laptop, may take up to 13 hours of processing.
|
|
Use the -p, -d and -s options to speed up processing using the intermediate files
|
|
from a previous run.
|
|
|
|
For the Wikidata dump: get the latest-all.json.bz2 from https://dumps.wikimedia.org/wikidatawiki/entities/
|
|
For the Wikipedia dump: get enwiki-latest-pages-articles-multistream.xml.bz2
|
|
from https://dumps.wikimedia.org/enwiki/latest/
|
|
|
|
"""
|
|
from __future__ import unicode_literals
|
|
|
|
import datetime
|
|
from pathlib import Path
|
|
import plac
|
|
|
|
from bin.wiki_entity_linking import wikipedia_processor as wp
|
|
from bin.wiki_entity_linking import kb_creator
|
|
|
|
import spacy
|
|
|
|
from spacy import Errors
|
|
|
|
|
|
def now():
|
|
return datetime.datetime.now()
|
|
|
|
|
|
@plac.annotations(
|
|
wd_json=("Path to the downloaded WikiData JSON dump.", "positional", None, Path),
|
|
wp_xml=("Path to the downloaded Wikipedia XML dump.", "positional", None, Path),
|
|
output_dir=("Output directory", "positional", None, Path),
|
|
model=("Model name, should include pretrained vectors.", "positional", None, str),
|
|
max_per_alias=("Max. # entities per alias (default 10)", "option", "a", int),
|
|
min_freq=("Min. count of an entity in the corpus (default 20)", "option", "f", int),
|
|
min_pair=("Min. count of entity-alias pairs (default 5)", "option", "c", int),
|
|
entity_vector_length=("Length of entity vectors (default 64)", "option", "v", int),
|
|
loc_prior_prob=("Location to file with prior probabilities", "option", "p", Path),
|
|
loc_entity_defs=("Location to file with entity definitions", "option", "d", Path),
|
|
loc_entity_desc=("Location to file with entity descriptions", "option", "s", Path),
|
|
limit=("Optional threshold to limit lines read from dumps", "option", "l", int),
|
|
)
|
|
def main(
|
|
wd_json,
|
|
wp_xml,
|
|
output_dir,
|
|
model,
|
|
max_per_alias=10,
|
|
min_freq=20,
|
|
min_pair=5,
|
|
entity_vector_length=64,
|
|
loc_prior_prob=None,
|
|
loc_entity_defs=None,
|
|
loc_entity_desc=None,
|
|
limit=None,
|
|
):
|
|
print(now(), "Creating KB with Wikipedia and WikiData")
|
|
print()
|
|
|
|
if limit is not None:
|
|
print("Warning: reading only", limit, "lines of Wikipedia/Wikidata dumps.")
|
|
|
|
# STEP 0: set up IO
|
|
if not output_dir.exists():
|
|
output_dir.mkdir()
|
|
|
|
# STEP 1: create the NLP object
|
|
print(now(), "STEP 1: loaded model", model)
|
|
nlp = spacy.load(model)
|
|
|
|
# check the length of the nlp vectors
|
|
if "vectors" not in nlp.meta or not nlp.vocab.vectors.size:
|
|
raise ValueError(Errors.E155)
|
|
|
|
# STEP 2: create prior probabilities from WP
|
|
print()
|
|
if loc_prior_prob:
|
|
print(now(), "STEP 2: reading prior probabilities from", loc_prior_prob)
|
|
else:
|
|
# It takes about 2h to process 1000M lines of Wikipedia XML dump
|
|
loc_prior_prob = output_dir / "prior_prob.csv"
|
|
print(now(), "STEP 2: writing prior probabilities at", loc_prior_prob)
|
|
wp.read_prior_probs(wp_xml, loc_prior_prob, limit=limit)
|
|
|
|
# STEP 3: deduce entity frequencies from WP (takes only a few minutes)
|
|
print()
|
|
print(now(), "STEP 3: calculating entity frequencies")
|
|
loc_entity_freq = output_dir / "entity_freq.csv"
|
|
wp.write_entity_counts(loc_prior_prob, loc_entity_freq, to_print=False)
|
|
|
|
loc_kb = output_dir / "kb"
|
|
|
|
# STEP 4: reading entity descriptions and definitions from WikiData or from file
|
|
print()
|
|
if loc_entity_defs and loc_entity_desc:
|
|
read_raw = False
|
|
print(now(), "STEP 4a: reading entity definitions from", loc_entity_defs)
|
|
print(now(), "STEP 4b: reading entity descriptions from", loc_entity_desc)
|
|
else:
|
|
# It takes about 10h to process 55M lines of Wikidata JSON dump
|
|
read_raw = True
|
|
loc_entity_defs = output_dir / "entity_defs.csv"
|
|
loc_entity_desc = output_dir / "entity_descriptions.csv"
|
|
print(now(), "STEP 4: parsing wikidata for entity definitions and descriptions")
|
|
|
|
# STEP 5: creating the actual KB
|
|
# It takes ca. 30 minutes to pretrain the entity embeddings
|
|
print()
|
|
print(now(), "STEP 5: creating the KB at", loc_kb)
|
|
kb = kb_creator.create_kb(
|
|
nlp=nlp,
|
|
max_entities_per_alias=max_per_alias,
|
|
min_entity_freq=min_freq,
|
|
min_occ=min_pair,
|
|
entity_def_output=loc_entity_defs,
|
|
entity_descr_output=loc_entity_desc,
|
|
count_input=loc_entity_freq,
|
|
prior_prob_input=loc_prior_prob,
|
|
wikidata_input=wd_json,
|
|
entity_vector_length=entity_vector_length,
|
|
limit=limit,
|
|
read_raw_data=read_raw,
|
|
)
|
|
if read_raw:
|
|
print(" - wrote entity definitions to", loc_entity_defs)
|
|
print(" - wrote writing entity descriptions to", loc_entity_desc)
|
|
|
|
kb.dump(loc_kb)
|
|
nlp.to_disk(output_dir / "nlp")
|
|
|
|
print()
|
|
print(now(), "Done!")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
plac.call(main)
|