mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			157 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			157 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# coding: utf8
 | 
						|
from __future__ import unicode_literals
 | 
						|
 | 
						|
import pytest
 | 
						|
from spacy.language import Language
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def nlp():
 | 
						|
    return Language()
 | 
						|
 | 
						|
 | 
						|
def new_pipe(doc):
 | 
						|
    return doc
 | 
						|
 | 
						|
 | 
						|
def test_add_pipe_no_name(nlp):
 | 
						|
    nlp.add_pipe(new_pipe)
 | 
						|
    assert "new_pipe" in nlp.pipe_names
 | 
						|
 | 
						|
 | 
						|
def test_add_pipe_duplicate_name(nlp):
 | 
						|
    nlp.add_pipe(new_pipe, name="duplicate_name")
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.add_pipe(new_pipe, name="duplicate_name")
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("name", ["parser"])
 | 
						|
def test_add_pipe_first(nlp, name):
 | 
						|
    nlp.add_pipe(new_pipe, name=name, first=True)
 | 
						|
    assert nlp.pipeline[0][0] == name
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("name1,name2", [("parser", "lambda_pipe")])
 | 
						|
def test_add_pipe_last(nlp, name1, name2):
 | 
						|
    nlp.add_pipe(lambda doc: doc, name=name2)
 | 
						|
    nlp.add_pipe(new_pipe, name=name1, last=True)
 | 
						|
    assert nlp.pipeline[0][0] != name1
 | 
						|
    assert nlp.pipeline[-1][0] == name1
 | 
						|
 | 
						|
 | 
						|
def test_cant_add_pipe_first_and_last(nlp):
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.add_pipe(new_pipe, first=True, last=True)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("name", ["my_component"])
 | 
						|
def test_get_pipe(nlp, name):
 | 
						|
    with pytest.raises(KeyError):
 | 
						|
        nlp.get_pipe(name)
 | 
						|
    nlp.add_pipe(new_pipe, name=name)
 | 
						|
    assert nlp.get_pipe(name) == new_pipe
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "name,replacement,not_callable", [("my_component", lambda doc: doc, {})]
 | 
						|
)
 | 
						|
def test_replace_pipe(nlp, name, replacement, not_callable):
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.replace_pipe(name, new_pipe)
 | 
						|
    nlp.add_pipe(new_pipe, name=name)
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.replace_pipe(name, not_callable)
 | 
						|
    nlp.replace_pipe(name, replacement)
 | 
						|
    assert nlp.get_pipe(name) != new_pipe
 | 
						|
    assert nlp.get_pipe(name) == replacement
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("old_name,new_name", [("old_pipe", "new_pipe")])
 | 
						|
def test_rename_pipe(nlp, old_name, new_name):
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.rename_pipe(old_name, new_name)
 | 
						|
    nlp.add_pipe(new_pipe, name=old_name)
 | 
						|
    nlp.rename_pipe(old_name, new_name)
 | 
						|
    assert nlp.pipeline[0][0] == new_name
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("name", ["my_component"])
 | 
						|
def test_remove_pipe(nlp, name):
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.remove_pipe(name)
 | 
						|
    nlp.add_pipe(new_pipe, name=name)
 | 
						|
    assert len(nlp.pipeline) == 1
 | 
						|
    removed_name, removed_component = nlp.remove_pipe(name)
 | 
						|
    assert not len(nlp.pipeline)
 | 
						|
    assert removed_name == name
 | 
						|
    assert removed_component == new_pipe
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("name", ["my_component"])
 | 
						|
def test_disable_pipes_method(nlp, name):
 | 
						|
    nlp.add_pipe(new_pipe, name=name)
 | 
						|
    assert nlp.has_pipe(name)
 | 
						|
    disabled = nlp.disable_pipes(name)
 | 
						|
    assert not nlp.has_pipe(name)
 | 
						|
    disabled.restore()
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("name", ["my_component"])
 | 
						|
def test_disable_pipes_context(nlp, name):
 | 
						|
    nlp.add_pipe(new_pipe, name=name)
 | 
						|
    assert nlp.has_pipe(name)
 | 
						|
    with nlp.disable_pipes(name):
 | 
						|
        assert not nlp.has_pipe(name)
 | 
						|
    assert nlp.has_pipe(name)
 | 
						|
 | 
						|
 | 
						|
def test_disable_pipes_list_arg(nlp):
 | 
						|
    for name in ["c1", "c2", "c3"]:
 | 
						|
        nlp.add_pipe(new_pipe, name=name)
 | 
						|
        assert nlp.has_pipe(name)
 | 
						|
    with nlp.disable_pipes(["c1", "c2"]):
 | 
						|
        assert not nlp.has_pipe("c1")
 | 
						|
        assert not nlp.has_pipe("c2")
 | 
						|
        assert nlp.has_pipe("c3")
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("n_pipes", [100])
 | 
						|
def test_add_lots_of_pipes(nlp, n_pipes):
 | 
						|
    for i in range(n_pipes):
 | 
						|
        nlp.add_pipe(lambda doc: doc, name="pipe_%d" % i)
 | 
						|
    assert len(nlp.pipe_names) == n_pipes
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("component", ["ner", {"hello": "world"}])
 | 
						|
def test_raise_for_invalid_components(nlp, component):
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.add_pipe(component)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("component", ["ner", "tagger", "parser", "textcat"])
 | 
						|
def test_pipe_base_class_add_label(nlp, component):
 | 
						|
    label = "TEST"
 | 
						|
    pipe = nlp.create_pipe(component)
 | 
						|
    pipe.add_label(label)
 | 
						|
    if component == "tagger":
 | 
						|
        # Tagger always has the default coarse-grained label scheme
 | 
						|
        assert label in pipe.labels
 | 
						|
    else:
 | 
						|
        assert pipe.labels == (label,)
 | 
						|
 | 
						|
 | 
						|
def test_pipe_labels(nlp):
 | 
						|
    input_labels = {
 | 
						|
        "ner": ["PERSON", "ORG", "GPE"],
 | 
						|
        "textcat": ["POSITIVE", "NEGATIVE"],
 | 
						|
    }
 | 
						|
    for name, labels in input_labels.items():
 | 
						|
        pipe = nlp.create_pipe(name)
 | 
						|
        for label in labels:
 | 
						|
            pipe.add_label(label)
 | 
						|
        assert len(pipe.labels) == len(labels)
 | 
						|
        nlp.add_pipe(pipe)
 | 
						|
    assert len(nlp.pipe_labels) == len(input_labels)
 | 
						|
    for name, labels in nlp.pipe_labels.items():
 | 
						|
        assert sorted(input_labels[name]) == sorted(labels)
 |