spaCy/website/api/vectors.jade

477 lines
13 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//- 💫 DOCS > API > VECTORS
include ../_includes/_mixins
p
| Vectors data is kept in the #[code Vectors.data] attribute, which should
| be an instance of #[code numpy.ndarray] (for CPU vectors) or
| #[code cupy.ndarray] (for GPU vectors). Multiple keys can be mapped to
| the same vector, and not all of the rows in the table need to be
| assigned so #[code vectors.n_keys] may be greater or smaller than
| #[code vectors.shape[0]].
+h(2, "init") Vectors.__init__
+tag method
p
| Create a new vector store. You can set the vector values and keys
| directly on initialisation, or supply a #[code shape] keyword argument
| to create an empty table you can add vectors to later.
+aside-code("Example").
from spacy.vectors import Vectors
empty_vectors = Vectors(shape=(10000, 300))
data = numpy.zeros((3, 300), dtype='f')
keys = [u'cat', u'dog', u'rat']
vectors = Vectors(data=data, keys=keys)
+table(["Name", "Type", "Description"])
+row
+cell #[code data]
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
+cell The vector data.
+row
+cell #[code keys]
+cell iterable
+cell A sequence of keys aligned with the data.
+row
+cell #[code shape]
+cell tuple
+cell
| Size of the table as #[code (n_entries, n_columns)], the number
| of entries and number of columns. Not required if you're
| initialising the object with #[code data] and #[code keys].
+row("foot")
+cell returns
+cell #[code Vectors]
+cell The newly created object.
+h(2, "getitem") Vectors.__getitem__
+tag method
p
| Get a vector by key. If the key is not found in the table, a
| #[code KeyError] is raised.
+aside-code("Example").
cat_id = nlp.vocab.strings[u'cat']
cat_vector = nlp.vocab.vectors[cat_id]
assert cat_vector == nlp.vocab[u'cat'].vector
+table(["Name", "Type", "Description"])
+row
+cell #[code key]
+cell int
+cell The key to get the vector for.
+row
+cell returns
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
+cell The vector for the key.
+h(2, "setitem") Vectors.__setitem__
+tag method
p
| Set a vector for the given key.
+aside-code("Example").
cat_id = nlp.vocab.strings[u'cat']
vector = numpy.random.uniform(-1, 1, (300,))
nlp.vocab.vectors[cat_id] = vector
+table(["Name", "Type", "Description"])
+row
+cell #[code key]
+cell int
+cell The key to set the vector for.
+row
+cell #[code vector]
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
+cell The vector to set.
+h(2, "iter") Vectors.__iter__
+tag method
p Iterate over the keys in the table.
+aside-code("Example").
for key in nlp.vocab.vectors:
print(key, nlp.vocab.strings[key])
+table(["Name", "Type", "Description"])
+row("foot")
+cell yields
+cell int
+cell A key in the table.
+h(2, "len") Vectors.__len__
+tag method
p Return the number of vectors in the table.
+aside-code("Example").
vectors = Vectors(shape=(3, 300))
assert len(vectors) == 3
+table(["Name", "Type", "Description"])
+row("foot")
+cell returns
+cell int
+cell The number of vectors in the table.
+h(2, "contains") Vectors.__contains__
+tag method
p
| Check whether a key has been mapped to a vector entry in the table.
+aside-code("Example").
cat_id = nlp.vocab.strings[u'cat']
nlp.vectors.add(cat_id, numpy.random.uniform(-1, 1, (300,)))
assert cat_id in vectors
+table(["Name", "Type", "Description"])
+row
+cell #[code key]
+cell int
+cell The key to check.
+row("foot")
+cell returns
+cell bool
+cell Whether the key has a vector entry.
+h(2, "add") Vectors.add
+tag method
p
| Add a key to the table, optionally setting a vector value as well. Keys
| can be mapped to an existing vector by setting #[code row], or a new
| vector can be added. When adding unicode keys, keep in mind that the
| #[code Vectors] class itself has no
| #[+api("stringstore") #[code StringStore]], so you have to store the
| hash-to-string mapping separately. If you need to manage the strings,
| you should use the #[code Vectors] via the
| #[+api("vocab") #[code Vocab]] class, e.g. #[code vocab.vectors].
+aside-code("Example").
vector = numpy.random.uniform(-1, 1, (300,))
cat_id = nlp.vocab.strings[u'cat']
nlp.vocab.vectors.add(cat_id, vector=vector)
nlp.vocab.vectors.add(u'dog', row=0)
+table(["Name", "Type", "Description"])
+row
+cell #[code key]
+cell unicode / int
+cell The key to add.
+row
+cell #[code vector]
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
+cell An optional vector to add for the key.
+row
+cell #[code row]
+cell int
+cell An optional row number of a vector to map the key to.
+row("foot")
+cell returns
+cell int
+cell The row the vector was added to.
+h(2, "resize") Vectors.resize
+tag method
p
| Resize the underlying vectors array. If #[code inplace=True], the memory
| is reallocated. This may cause other references to the data to become
| invalid, so only use #[code inplace=True] if you're sure that's what you
| want. If the number of vectors is reduced, keys mapped to rows that have
| been deleted are removed. These removed items are returned as a list of
| #[code (key, row)] tuples.
+aside-code("Example").
removed = nlp.vocab.vectors.resize((10000, 300))
+table(["Name", "Type", "Description"])
+row
+cell #[code shape]
+cell tuple
+cell
| A #[code (rows, dims)] tuple describing the number of rows and
| dimensions.
+row
+cell #[code inplace]
+cell bool
+cell Reallocate the memory.
+row("foot")
+cell returns
+cell list
+cell The removed items as a list of #[code (key, row)] tuples.
+h(2, "keys") Vectors.keys
+tag method
p A sequence of the keys in the table.
+aside-code("Example").
for key in nlp.vocab.vectors.keys():
print(key, nlp.vocab.strings[key])
+table(["Name", "Type", "Description"])
+row("foot")
+cell returns
+cell iterable
+cell The keys.
+h(2, "values") Vectors.values
+tag method
p
| Iterate over vectors that have been assigned to at least one key. Note
| that some vectors may be unassigned, so the number of vectors returned
| may be less than the length of the vectors table.
+aside-code("Example").
for vector in nlp.vocab.vectors.values():
print(vector)
+table(["Name", "Type", "Description"])
+row("foot")
+cell yields
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
+cell A vector in the table.
+h(2, "items") Vectors.items
+tag method
p Iterate over #[code (key, vector)] pairs, in order.
+aside-code("Example").
for key, vector in nlp.vocab.vectors.items():
print(key, nlp.vocab.strings[key], vector)
+table(["Name", "Type", "Description"])
+row("foot")
+cell yields
+cell tuple
+cell #[code (key, vector)] pairs, in order.
+h(2, "shape") Vectors.shape
+tag property
p
| Get #[code (rows, dims)] tuples of number of rows and number of
| dimensions in the vector table.
+aside-code("Example").
vectors = Vectors(shape(1, 300))
vectors.add(u'cat', numpy.random.uniform(-1, 1, (300,)))
rows, dims = vectors.shape
assert rows == 1
assert dims == 300
+table(["Name", "Type", "Description"])
+row("foot")
+cell returns
+cell tuple
+cell A #[code (rows, dims)] pair.
+h(2, "size") Vectors.size
+tag property
p The vector size, i.e. #[code rows * dims].
+aside-code("Example").
vectors = Vectors(shape=(500, 300))
assert vectors.size == 150000
+table(["Name", "Type", "Description"])
+row("foot")
+cell returns
+cell int
+cell The vector size.
+h(2, "is_full") Vectors.is_full
+tag property
p
| Whether the vectors table is full and has no slots are available for new
| keys. If a table is full, it can be resized using
| #[+api("vectors#resize") #[code Vectors.resize]].
+aside-code("Example").
vectors = Vectors(shape=(1, 300))
vectors.add(u'cat', numpy.random.uniform(-1, 1, (300,)))
assert vectors.is_full
+table(["Name", "Type", "Description"])
+row("foot")
+cell returns
+cell bool
+cell Whether the vectors table is full.
+h(2, "n_keys") Vectors.n_keys
+tag property
p
| Get the number of keys in the table. Note that this is the number of
| #[em all] keys, not just unique vectors. If several keys are mapped
| are mapped to the same vectors, they will be counted individually.
+aside-code("Example").
vectors = Vectors(shape=(10, 300))
assert len(vectors) == 10
assert vectors.n_keys == 0
+table(["Name", "Type", "Description"])
+row("foot")
+cell returns
+cell int
+cell The number of all keys in the table.
+h(2, "from_glove") Vectors.from_glove
+tag method
p
| Load #[+a("https://nlp.stanford.edu/projects/glove/") GloVe] vectors from
| a directory. Assumes binary format, that the vocab is in a
| #[code vocab.txt], and that vectors are named
| #[code vectors.{size}.[fd].bin], e.g. #[code vectors.128.f.bin] for 128d
| float32 vectors, #[code vectors.300.d.bin] for 300d float64 (double)
| vectors, etc. By default GloVe outputs 64-bit vectors.
+aside-code("Example").
vectors = Vectors()
vectors.from_glove('/path/to/glove_vectors')
+table(["Name", "Type", "Description"])
+row
+cell #[code path]
+cell unicode / #[code Path]
+cell The path to load the GloVe vectors from.
+h(2, "to_disk") Vectors.to_disk
+tag method
p Save the current state to a directory.
+aside-code("Example").
vectors.to_disk('/path/to/vectors')
+table(["Name", "Type", "Description"])
+row
+cell #[code path]
+cell unicode / #[code Path]
+cell
| A path to a directory, which will be created if it doesn't exist.
| Paths may be either strings or #[code Path]-like objects.
+row
+cell #[code **exclude]
+cell -
+cell Named attributes to prevent from being saved.
+h(2, "from_disk") Vectors.from_disk
+tag method
p Loads state from a directory. Modifies the object in place and returns it.
+aside-code("Example").
vectors = Vectors(StringStore())
vectors.from_disk('/path/to/vectors')
+table(["Name", "Type", "Description"])
+row
+cell #[code path]
+cell unicode / #[code Path]
+cell
| A path to a directory. Paths may be either strings or
| #[code Path]-like objects.
+row("foot")
+cell returns
+cell #[code Vectors]
+cell The modified #[code Vectors] object.
+h(2, "to_bytes") Vectors.to_bytes
+tag method
p Serialize the current state to a binary string.
+aside-code("Example").
vectors_bytes = vectors.to_bytes()
+table(["Name", "Type", "Description"])
+row
+cell #[code **exclude]
+cell -
+cell Named attributes to prevent from being serialized.
+row("foot")
+cell returns
+cell bytes
+cell The serialized form of the #[code Vectors] object.
+h(2, "from_bytes") Vectors.from_bytes
+tag method
p Load state from a binary string.
+aside-code("Example").
fron spacy.vectors import Vectors
vectors_bytes = vectors.to_bytes()
new_vectors = Vectors(StringStore())
new_vectors.from_bytes(vectors_bytes)
+table(["Name", "Type", "Description"])
+row
+cell #[code data]
+cell bytes
+cell The data to load from.
+row
+cell #[code **exclude]
+cell -
+cell Named attributes to prevent from being loaded.
+row("foot")
+cell returns
+cell #[code Vectors]
+cell The #[code Vectors] object.
+h(2, "attributes") Attributes
+table(["Name", "Type", "Description"])
+row
+cell #[code data]
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
+cell
| Stored vectors data. #[code numpy] is used for CPU vectors,
| #[code cupy] for GPU vectors.
+row
+cell #[code key2row]
+cell dict
+cell
| Dictionary mapping word hashes to rows in the
| #[code Vectors.data] table.
+row
+cell #[code keys]
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
+cell
| Array keeping the keys in order, such that
| #[code keys[vectors.key2row[key]] == key]