mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			274 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			274 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import pytest
 | 
						|
from thinc.config import Config, ConfigValidationError
 | 
						|
import spacy
 | 
						|
from spacy.lang.en import English
 | 
						|
from spacy.language import Language
 | 
						|
from spacy.util import registry, deep_merge_configs, load_model_from_config
 | 
						|
from spacy.ml.models import build_Tok2Vec_model, build_tb_parser_model
 | 
						|
 | 
						|
from ..util import make_tempdir
 | 
						|
 | 
						|
 | 
						|
nlp_config_string = """
 | 
						|
[training]
 | 
						|
batch_size = 666
 | 
						|
 | 
						|
[nlp]
 | 
						|
lang = "en"
 | 
						|
pipeline = ["tok2vec", "tagger"]
 | 
						|
 | 
						|
[components]
 | 
						|
 | 
						|
[components.tok2vec]
 | 
						|
factory = "tok2vec"
 | 
						|
 | 
						|
[components.tok2vec.model]
 | 
						|
@architectures = "spacy.HashEmbedCNN.v1"
 | 
						|
pretrained_vectors = null
 | 
						|
width = 342
 | 
						|
depth = 4
 | 
						|
window_size = 1
 | 
						|
embed_size = 2000
 | 
						|
maxout_pieces = 3
 | 
						|
subword_features = true
 | 
						|
dropout = null
 | 
						|
 | 
						|
[components.tagger]
 | 
						|
factory = "tagger"
 | 
						|
 | 
						|
[components.tagger.model]
 | 
						|
@architectures = "spacy.Tagger.v1"
 | 
						|
 | 
						|
[components.tagger.model.tok2vec]
 | 
						|
@architectures = "spacy.Tok2VecTensors.v1"
 | 
						|
width = ${components.tok2vec.model:width}
 | 
						|
"""
 | 
						|
 | 
						|
 | 
						|
parser_config_string = """
 | 
						|
[model]
 | 
						|
@architectures = "spacy.TransitionBasedParser.v1"
 | 
						|
nr_feature_tokens = 99
 | 
						|
hidden_width = 66
 | 
						|
maxout_pieces = 2
 | 
						|
 | 
						|
[model.tok2vec]
 | 
						|
@architectures = "spacy.HashEmbedCNN.v1"
 | 
						|
pretrained_vectors = null
 | 
						|
width = 333
 | 
						|
depth = 4
 | 
						|
embed_size = 5555
 | 
						|
window_size = 1
 | 
						|
maxout_pieces = 7
 | 
						|
subword_features = false
 | 
						|
dropout = null
 | 
						|
"""
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("my_test_parser")
 | 
						|
def my_parser():
 | 
						|
    tok2vec = build_Tok2Vec_model(
 | 
						|
        width=321,
 | 
						|
        embed_size=5432,
 | 
						|
        pretrained_vectors=None,
 | 
						|
        window_size=3,
 | 
						|
        maxout_pieces=4,
 | 
						|
        subword_features=True,
 | 
						|
        char_embed=True,
 | 
						|
        nM=64,
 | 
						|
        nC=8,
 | 
						|
        conv_depth=2,
 | 
						|
        bilstm_depth=0,
 | 
						|
        dropout=None,
 | 
						|
    )
 | 
						|
    parser = build_tb_parser_model(
 | 
						|
        tok2vec=tok2vec, nr_feature_tokens=7, hidden_width=65, maxout_pieces=5
 | 
						|
    )
 | 
						|
    return parser
 | 
						|
 | 
						|
 | 
						|
def test_create_nlp_from_config():
 | 
						|
    config = Config().from_str(nlp_config_string)
 | 
						|
    with pytest.raises(ConfigValidationError):
 | 
						|
        nlp, _ = load_model_from_config(config, auto_fill=False)
 | 
						|
    nlp, resolved = load_model_from_config(config, auto_fill=True)
 | 
						|
    assert nlp.config["training"]["batch_size"] == 666
 | 
						|
    assert len(nlp.config["training"]) > 1
 | 
						|
    assert nlp.pipe_names == ["tok2vec", "tagger"]
 | 
						|
    assert len(nlp.config["components"]) == 2
 | 
						|
    assert len(nlp.config["nlp"]["pipeline"]) == 2
 | 
						|
    nlp.remove_pipe("tagger")
 | 
						|
    assert len(nlp.config["components"]) == 1
 | 
						|
    assert len(nlp.config["nlp"]["pipeline"]) == 1
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        bad_cfg = {"yolo": {}}
 | 
						|
        load_model_from_config(Config(bad_cfg), auto_fill=True)
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        bad_cfg = {"pipeline": {"foo": "bar"}}
 | 
						|
        load_model_from_config(Config(bad_cfg), auto_fill=True)
 | 
						|
 | 
						|
 | 
						|
def test_create_nlp_from_config_multiple_instances():
 | 
						|
    """Test that the nlp object is created correctly for a config with multiple
 | 
						|
    instances of the same component."""
 | 
						|
    config = Config().from_str(nlp_config_string)
 | 
						|
    config["components"] = {
 | 
						|
        "t2v": config["components"]["tok2vec"],
 | 
						|
        "tagger1": config["components"]["tagger"],
 | 
						|
        "tagger2": config["components"]["tagger"],
 | 
						|
    }
 | 
						|
    config["nlp"]["pipeline"] = list(config["components"].keys())
 | 
						|
    nlp, _ = load_model_from_config(config, auto_fill=True)
 | 
						|
    assert nlp.pipe_names == ["t2v", "tagger1", "tagger2"]
 | 
						|
    assert nlp.get_pipe_meta("t2v").factory == "tok2vec"
 | 
						|
    assert nlp.get_pipe_meta("tagger1").factory == "tagger"
 | 
						|
    assert nlp.get_pipe_meta("tagger2").factory == "tagger"
 | 
						|
    pipeline_config = nlp.config["components"]
 | 
						|
    assert len(pipeline_config) == 3
 | 
						|
    assert list(pipeline_config.keys()) == ["t2v", "tagger1", "tagger2"]
 | 
						|
    assert nlp.config["nlp"]["pipeline"] == ["t2v", "tagger1", "tagger2"]
 | 
						|
 | 
						|
 | 
						|
def test_serialize_nlp():
 | 
						|
    """ Create a custom nlp pipeline from config and ensure it serializes it correctly """
 | 
						|
    nlp_config = Config().from_str(nlp_config_string)
 | 
						|
    nlp, _ = load_model_from_config(nlp_config, auto_fill=True)
 | 
						|
    nlp.begin_training()
 | 
						|
    assert "tok2vec" in nlp.pipe_names
 | 
						|
    assert "tagger" in nlp.pipe_names
 | 
						|
    assert "parser" not in nlp.pipe_names
 | 
						|
    assert nlp.get_pipe("tagger").model.get_ref("tok2vec").get_dim("nO") == 342
 | 
						|
 | 
						|
    with make_tempdir() as d:
 | 
						|
        nlp.to_disk(d)
 | 
						|
        nlp2 = spacy.load(d)
 | 
						|
        assert "tok2vec" in nlp2.pipe_names
 | 
						|
        assert "tagger" in nlp2.pipe_names
 | 
						|
        assert "parser" not in nlp2.pipe_names
 | 
						|
        assert nlp2.get_pipe("tagger").model.get_ref("tok2vec").get_dim("nO") == 342
 | 
						|
 | 
						|
 | 
						|
def test_serialize_custom_nlp():
 | 
						|
    """ Create a custom nlp pipeline and ensure it serializes it correctly"""
 | 
						|
    nlp = English()
 | 
						|
    parser_cfg = dict()
 | 
						|
    parser_cfg["model"] = {"@architectures": "my_test_parser"}
 | 
						|
    nlp.add_pipe("parser", config=parser_cfg)
 | 
						|
    nlp.begin_training()
 | 
						|
 | 
						|
    with make_tempdir() as d:
 | 
						|
        nlp.to_disk(d)
 | 
						|
        nlp2 = spacy.load(d)
 | 
						|
        model = nlp2.get_pipe("parser").model
 | 
						|
        model.get_ref("tok2vec")
 | 
						|
        upper = model.get_ref("upper")
 | 
						|
        # check that we have the correct settings, not the default ones
 | 
						|
        assert upper.get_dim("nI") == 65
 | 
						|
 | 
						|
 | 
						|
def test_serialize_parser():
 | 
						|
    """ Create a non-default parser config to check nlp serializes it correctly """
 | 
						|
    nlp = English()
 | 
						|
    model_config = Config().from_str(parser_config_string)
 | 
						|
    parser = nlp.add_pipe("parser", config=model_config)
 | 
						|
    parser.add_label("nsubj")
 | 
						|
    nlp.begin_training()
 | 
						|
 | 
						|
    with make_tempdir() as d:
 | 
						|
        nlp.to_disk(d)
 | 
						|
        nlp2 = spacy.load(d)
 | 
						|
        model = nlp2.get_pipe("parser").model
 | 
						|
        model.get_ref("tok2vec")
 | 
						|
        upper = model.get_ref("upper")
 | 
						|
        # check that we have the correct settings, not the default ones
 | 
						|
        assert upper.get_dim("nI") == 66
 | 
						|
 | 
						|
 | 
						|
def test_deep_merge_configs():
 | 
						|
    config = {"a": "hello", "b": {"c": "d"}}
 | 
						|
    defaults = {"a": "world", "b": {"c": "e", "f": "g"}}
 | 
						|
    merged = deep_merge_configs(config, defaults)
 | 
						|
    assert len(merged) == 2
 | 
						|
    assert merged["a"] == "hello"
 | 
						|
    assert merged["b"] == {"c": "d", "f": "g"}
 | 
						|
    config = {"a": "hello", "b": {"@test": "x", "foo": 1}}
 | 
						|
    defaults = {"a": "world", "b": {"@test": "x", "foo": 100, "bar": 2}, "c": 100}
 | 
						|
    merged = deep_merge_configs(config, defaults)
 | 
						|
    assert len(merged) == 3
 | 
						|
    assert merged["a"] == "hello"
 | 
						|
    assert merged["b"] == {"@test": "x", "foo": 1, "bar": 2}
 | 
						|
    assert merged["c"] == 100
 | 
						|
    config = {"a": "hello", "b": {"@test": "x", "foo": 1}, "c": 100}
 | 
						|
    defaults = {"a": "world", "b": {"@test": "y", "foo": 100, "bar": 2}}
 | 
						|
    merged = deep_merge_configs(config, defaults)
 | 
						|
    assert len(merged) == 3
 | 
						|
    assert merged["a"] == "hello"
 | 
						|
    assert merged["b"] == {"@test": "x", "foo": 1}
 | 
						|
    assert merged["c"] == 100
 | 
						|
    # Test that leaving out the factory just adds to existing
 | 
						|
    config = {"a": "hello", "b": {"foo": 1}, "c": 100}
 | 
						|
    defaults = {"a": "world", "b": {"@test": "y", "foo": 100, "bar": 2}}
 | 
						|
    merged = deep_merge_configs(config, defaults)
 | 
						|
    assert len(merged) == 3
 | 
						|
    assert merged["a"] == "hello"
 | 
						|
    assert merged["b"] == {"@test": "y", "foo": 1, "bar": 2}
 | 
						|
    assert merged["c"] == 100
 | 
						|
 | 
						|
 | 
						|
def test_config_nlp_roundtrip():
 | 
						|
    """Test that a config prduced by the nlp object passes training config
 | 
						|
    validation."""
 | 
						|
    nlp = English()
 | 
						|
    nlp.add_pipe("entity_ruler")
 | 
						|
    nlp.add_pipe("ner")
 | 
						|
    new_nlp, new_config = load_model_from_config(nlp.config, auto_fill=False)
 | 
						|
    assert new_nlp.config == nlp.config
 | 
						|
    assert new_nlp.pipe_names == nlp.pipe_names
 | 
						|
    assert new_nlp._pipe_configs == nlp._pipe_configs
 | 
						|
    assert new_nlp._pipe_meta == nlp._pipe_meta
 | 
						|
    assert new_nlp._factory_meta == nlp._factory_meta
 | 
						|
 | 
						|
 | 
						|
def test_serialize_config_language_specific():
 | 
						|
    """Test that config serialization works as expected with language-specific
 | 
						|
    factories."""
 | 
						|
    name = "test_serialize_config_language_specific"
 | 
						|
 | 
						|
    @English.factory(name, default_config={"foo": 20})
 | 
						|
    def custom_factory(nlp: Language, name: str, foo: int):
 | 
						|
        return lambda doc: doc
 | 
						|
 | 
						|
    nlp = Language()
 | 
						|
    assert not nlp.has_factory(name)
 | 
						|
    nlp = English()
 | 
						|
    assert nlp.has_factory(name)
 | 
						|
    nlp.add_pipe(name, config={"foo": 100}, name="bar")
 | 
						|
    pipe_config = nlp.config["components"]["bar"]
 | 
						|
    assert pipe_config["foo"] == 100
 | 
						|
    assert pipe_config["factory"] == name
 | 
						|
 | 
						|
    with make_tempdir() as d:
 | 
						|
        nlp.to_disk(d)
 | 
						|
        nlp2 = spacy.load(d)
 | 
						|
    assert nlp2.has_factory(name)
 | 
						|
    assert nlp2.pipe_names == ["bar"]
 | 
						|
    assert nlp2.get_pipe_meta("bar").factory == name
 | 
						|
    pipe_config = nlp2.config["components"]["bar"]
 | 
						|
    assert pipe_config["foo"] == 100
 | 
						|
    assert pipe_config["factory"] == name
 | 
						|
 | 
						|
    config = Config().from_str(nlp2.config.to_str())
 | 
						|
    config["nlp"]["lang"] = "de"
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        # German doesn't have a factory, only English does
 | 
						|
        load_model_from_config(config)
 | 
						|
 | 
						|
 | 
						|
def test_serialize_config_missing_pipes():
 | 
						|
    config = Config().from_str(nlp_config_string)
 | 
						|
    config["components"].pop("tok2vec")
 | 
						|
    assert "tok2vec" in config["nlp"]["pipeline"]
 | 
						|
    assert "tok2vec" not in config["components"]
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        load_model_from_config(config, auto_fill=True)
 |