spaCy/spacy/lang/ru/lemmatizer.py
Adriane Boyd 30d31fd335
Update Russian and Ukrainian lemmatizers (#11811)
* pymorph2 issues #11620, #11626, #11625:
- #11620: pymorphy2_lookup
- #11626: handle multiple forms pointing to the same normal form + handling empty POS tag
- #11625: matching DET that are labelled as PRON by pymorhp2

* Move lemmatizer algorithm changes back into RussianLemmatizer

* Fix uk pymorphy3_lookup mode init

* Move and update tests for ru/uk lookup lemmatizer modes

* Fix typo

* Remove traces of previous behavior for uninflected POS

* Refactor to private generic-looking pymorphy methods

* Remove xfailed uk lemmatizer cases

* Update spacy/lang/ru/lemmatizer.py

Co-authored-by: Richard Hudson <richard@explosion.ai>

Co-authored-by: Dmytro S Lituiev <d.lituiev@gmail.com>
Co-authored-by: Richard Hudson <richard@explosion.ai>
2022-11-25 11:12:46 +01:00

219 lines
7.8 KiB
Python

from typing import Optional, List, Dict, Tuple, Callable
from thinc.api import Model
from ...pipeline import Lemmatizer
from ...pipeline.lemmatizer import lemmatizer_score
from ...symbols import POS
from ...tokens import Token
from ...vocab import Vocab
PUNCT_RULES = {"«": '"', "»": '"'}
class RussianLemmatizer(Lemmatizer):
def __init__(
self,
vocab: Vocab,
model: Optional[Model],
name: str = "lemmatizer",
*,
mode: str = "pymorphy3",
overwrite: bool = False,
scorer: Optional[Callable] = lemmatizer_score,
) -> None:
if mode in {"pymorphy2", "pymorphy2_lookup"}:
try:
from pymorphy2 import MorphAnalyzer
except ImportError:
raise ImportError(
"The lemmatizer mode 'pymorphy2' requires the "
"pymorphy2 library and dictionaries. Install them with: "
"pip install pymorphy2"
"# for Ukrainian dictionaries:"
"pip install pymorphy2-dicts-uk"
) from None
if getattr(self, "_morph", None) is None:
self._morph = MorphAnalyzer(lang="ru")
elif mode in {"pymorphy3", "pymorphy3_lookup"}:
try:
from pymorphy3 import MorphAnalyzer
except ImportError:
raise ImportError(
"The lemmatizer mode 'pymorphy3' requires the "
"pymorphy3 library and dictionaries. Install them with: "
"pip install pymorphy3"
"# for Ukrainian dictionaries:"
"pip install pymorphy3-dicts-uk"
) from None
if getattr(self, "_morph", None) is None:
self._morph = MorphAnalyzer(lang="ru")
super().__init__(
vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer
)
def _pymorphy_lemmatize(self, token: Token) -> List[str]:
string = token.text
univ_pos = token.pos_
morphology = token.morph.to_dict()
if univ_pos == "PUNCT":
return [PUNCT_RULES.get(string, string)]
if univ_pos not in ("ADJ", "DET", "NOUN", "NUM", "PRON", "PROPN", "VERB"):
return self._pymorphy_lookup_lemmatize(token)
analyses = self._morph.parse(string)
filtered_analyses = []
for analysis in analyses:
if not analysis.is_known:
# Skip suggested parse variant for unknown word for pymorphy
continue
analysis_pos, _ = oc2ud(str(analysis.tag))
if (
analysis_pos == univ_pos
or (analysis_pos in ("NOUN", "PROPN") and univ_pos in ("NOUN", "PROPN"))
or ((analysis_pos == "PRON") and (univ_pos == "DET"))
):
filtered_analyses.append(analysis)
if not len(filtered_analyses):
return [string.lower()]
if morphology is None or (len(morphology) == 1 and POS in morphology):
return list(
dict.fromkeys([analysis.normal_form for analysis in filtered_analyses])
)
if univ_pos in ("ADJ", "DET", "NOUN", "PROPN"):
features_to_compare = ["Case", "Number", "Gender"]
elif univ_pos == "NUM":
features_to_compare = ["Case", "Gender"]
elif univ_pos == "PRON":
features_to_compare = ["Case", "Number", "Gender", "Person"]
else: # VERB
features_to_compare = [
"Aspect",
"Gender",
"Mood",
"Number",
"Tense",
"VerbForm",
"Voice",
]
analyses, filtered_analyses = filtered_analyses, []
for analysis in analyses:
_, analysis_morph = oc2ud(str(analysis.tag))
for feature in features_to_compare:
if (
feature in morphology
and feature in analysis_morph
and morphology[feature].lower() != analysis_morph[feature].lower()
):
break
else:
filtered_analyses.append(analysis)
if not len(filtered_analyses):
return [string.lower()]
return list(
dict.fromkeys([analysis.normal_form for analysis in filtered_analyses])
)
def _pymorphy_lookup_lemmatize(self, token: Token) -> List[str]:
string = token.text
analyses = self._morph.parse(string)
# often multiple forms would derive from the same normal form
# thus check _unique_ normal forms
normal_forms = set([an.normal_form for an in analyses])
if len(normal_forms) == 1:
return [next(iter(normal_forms))]
return [string]
def pymorphy2_lemmatize(self, token: Token) -> List[str]:
return self._pymorphy_lemmatize(token)
def pymorphy2_lookup_lemmatize(self, token: Token) -> List[str]:
return self._pymorphy_lookup_lemmatize(token)
def pymorphy3_lemmatize(self, token: Token) -> List[str]:
return self._pymorphy_lemmatize(token)
def pymorphy3_lookup_lemmatize(self, token: Token) -> List[str]:
return self._pymorphy_lookup_lemmatize(token)
def oc2ud(oc_tag: str) -> Tuple[str, Dict[str, str]]:
gram_map = {
"_POS": {
"ADJF": "ADJ",
"ADJS": "ADJ",
"ADVB": "ADV",
"Apro": "DET",
"COMP": "ADJ", # Can also be an ADV - unchangeable
"CONJ": "CCONJ", # Can also be a SCONJ - both unchangeable ones
"GRND": "VERB",
"INFN": "VERB",
"INTJ": "INTJ",
"NOUN": "NOUN",
"NPRO": "PRON",
"NUMR": "NUM",
"NUMB": "NUM",
"PNCT": "PUNCT",
"PRCL": "PART",
"PREP": "ADP",
"PRTF": "VERB",
"PRTS": "VERB",
"VERB": "VERB",
},
"Animacy": {"anim": "Anim", "inan": "Inan"},
"Aspect": {"impf": "Imp", "perf": "Perf"},
"Case": {
"ablt": "Ins",
"accs": "Acc",
"datv": "Dat",
"gen1": "Gen",
"gen2": "Gen",
"gent": "Gen",
"loc2": "Loc",
"loct": "Loc",
"nomn": "Nom",
"voct": "Voc",
},
"Degree": {"COMP": "Cmp", "Supr": "Sup"},
"Gender": {"femn": "Fem", "masc": "Masc", "neut": "Neut"},
"Mood": {"impr": "Imp", "indc": "Ind"},
"Number": {"plur": "Plur", "sing": "Sing"},
"NumForm": {"NUMB": "Digit"},
"Person": {"1per": "1", "2per": "2", "3per": "3", "excl": "2", "incl": "1"},
"Tense": {"futr": "Fut", "past": "Past", "pres": "Pres"},
"Variant": {"ADJS": "Brev", "PRTS": "Brev"},
"VerbForm": {
"GRND": "Conv",
"INFN": "Inf",
"PRTF": "Part",
"PRTS": "Part",
"VERB": "Fin",
},
"Voice": {"actv": "Act", "pssv": "Pass"},
"Abbr": {"Abbr": "Yes"},
}
pos = "X"
morphology = dict()
unmatched = set()
grams = oc_tag.replace(" ", ",").split(",")
for gram in grams:
match = False
for categ, gmap in sorted(gram_map.items()):
if gram in gmap:
match = True
if categ == "_POS":
pos = gmap[gram]
else:
morphology[categ] = gmap[gram]
if not match:
unmatched.add(gram)
while len(unmatched) > 0:
gram = unmatched.pop()
if gram in ("Name", "Patr", "Surn", "Geox", "Orgn"):
pos = "PROPN"
elif gram == "Auxt":
pos = "AUX"
elif gram == "Pltm":
morphology["Number"] = "Ptan"
return pos, morphology