spaCy/spacy/pipeline/morphologizer.pyx
Sofie Van Landeghem f00de445dd
default models defined in component decorator (#5452)
* move defaults to pipeline and use in component decorator

* black formatting

* relative import
2020-05-19 16:20:03 +02:00

171 lines
6.6 KiB
Cython

# cython: infer_types=True, profile=True
cimport numpy as np
import numpy
import srsly
from thinc.api import to_categorical
from ..tokens.doc cimport Doc
from ..vocab cimport Vocab
from ..morphology cimport Morphology
from ..parts_of_speech import IDS as POS_IDS
from ..symbols import POS
from .. import util
from ..language import component
from ..util import link_vectors_to_models, create_default_optimizer
from ..errors import Errors, TempErrors
from .pipes import Tagger, _load_cfg
from .. import util
from .defaults import default_morphologizer
@component("morphologizer", assigns=["token.morph", "token.pos"], default_model=default_morphologizer)
class Morphologizer(Tagger):
def __init__(self, vocab, model, **cfg):
self.vocab = vocab
self.model = model
self._rehearsal_model = None
self.cfg = dict(sorted(cfg.items()))
self.cfg.setdefault("labels", {})
self.cfg.setdefault("morph_pos", {})
@property
def labels(self):
return tuple(self.cfg["labels"].keys())
def add_label(self, label):
if not isinstance(label, str):
raise ValueError(Errors.E187)
if label in self.labels:
return 0
morph = Morphology.feats_to_dict(label)
norm_morph_pos = self.vocab.strings[self.vocab.morphology.add(morph)]
pos = morph.get("POS", "")
if norm_morph_pos not in self.cfg["labels"]:
self.cfg["labels"][norm_morph_pos] = norm_morph_pos
self.cfg["morph_pos"][norm_morph_pos] = POS_IDS[pos]
return 1
def begin_training(self, get_examples=lambda: [], pipeline=None, sgd=None,
**kwargs):
for example in get_examples():
for i, morph in enumerate(example.token_annotation.morphs):
pos = example.token_annotation.get_pos(i)
morph = Morphology.feats_to_dict(morph)
norm_morph = self.vocab.strings[self.vocab.morphology.add(morph)]
if pos:
morph["POS"] = pos
norm_morph_pos = self.vocab.strings[self.vocab.morphology.add(morph)]
if norm_morph_pos not in self.cfg["labels"]:
self.cfg["labels"][norm_morph_pos] = norm_morph
self.cfg["morph_pos"][norm_morph_pos] = POS_IDS[pos]
self.set_output(len(self.labels))
self.model.initialize()
link_vectors_to_models(self.vocab)
if sgd is None:
sgd = self.create_optimizer()
return sgd
def set_annotations(self, docs, batch_tag_ids):
if isinstance(docs, Doc):
docs = [docs]
cdef Doc doc
cdef Vocab vocab = self.vocab
for i, doc in enumerate(docs):
doc_tag_ids = batch_tag_ids[i]
if hasattr(doc_tag_ids, "get"):
doc_tag_ids = doc_tag_ids.get()
for j, tag_id in enumerate(doc_tag_ids):
morph = self.labels[tag_id]
doc.c[j].morph = self.vocab.morphology.add(self.cfg["labels"][morph])
doc.c[j].pos = self.cfg["morph_pos"][morph]
doc.is_morphed = True
def get_loss(self, examples, scores):
scores = self.model.ops.flatten(scores)
tag_index = {tag: i for i, tag in enumerate(self.labels)}
cdef int idx = 0
correct = numpy.zeros((scores.shape[0],), dtype="i")
guesses = scores.argmax(axis=1)
known_labels = numpy.ones((scores.shape[0], 1), dtype="f")
for ex in examples:
gold = ex.gold
for i in range(len(gold.morphs)):
pos = gold.pos[i] if i < len(gold.pos) else ""
morph = gold.morphs[i]
feats = Morphology.feats_to_dict(morph)
if pos:
feats["POS"] = pos
if len(feats) > 0:
morph = self.vocab.strings[self.vocab.morphology.add(feats)]
if morph == "":
morph = Morphology.EMPTY_MORPH
if morph is None:
correct[idx] = guesses[idx]
elif morph in tag_index:
correct[idx] = tag_index[morph]
else:
correct[idx] = 0
known_labels[idx] = 0.
idx += 1
correct = self.model.ops.xp.array(correct, dtype="i")
d_scores = scores - to_categorical(correct, n_classes=scores.shape[1])
d_scores *= self.model.ops.asarray(known_labels)
loss = (d_scores**2).sum()
docs = [ex.doc for ex in examples]
d_scores = self.model.ops.unflatten(d_scores, [len(d) for d in docs])
return float(loss), d_scores
def to_bytes(self, exclude=tuple(), **kwargs):
serialize = {}
serialize["model"] = self.model.to_bytes
serialize["vocab"] = self.vocab.to_bytes
serialize["cfg"] = lambda: srsly.json_dumps(self.cfg)
exclude = util.get_serialization_exclude(serialize, exclude, kwargs)
return util.to_bytes(serialize, exclude)
def from_bytes(self, bytes_data, exclude=tuple(), **kwargs):
def load_model(b):
try:
self.model.from_bytes(b)
except AttributeError:
raise ValueError(Errors.E149)
deserialize = {
"vocab": lambda b: self.vocab.from_bytes(b),
"cfg": lambda b: self.cfg.update(srsly.json_loads(b)),
"model": lambda b: load_model(b),
}
exclude = util.get_serialization_exclude(deserialize, exclude, kwargs)
util.from_bytes(bytes_data, deserialize, exclude)
return self
def to_disk(self, path, exclude=tuple(), **kwargs):
serialize = {
"vocab": lambda p: self.vocab.to_disk(p),
"model": lambda p: p.open("wb").write(self.model.to_bytes()),
"cfg": lambda p: srsly.write_json(p, self.cfg),
}
exclude = util.get_serialization_exclude(serialize, exclude, kwargs)
util.to_disk(path, serialize, exclude)
def from_disk(self, path, exclude=tuple(), **kwargs):
def load_model(p):
with p.open("rb") as file_:
try:
self.model.from_bytes(file_.read())
except AttributeError:
raise ValueError(Errors.E149)
deserialize = {
"vocab": lambda p: self.vocab.from_disk(p),
"cfg": lambda p: self.cfg.update(_load_cfg(p)),
"model": load_model,
}
exclude = util.get_serialization_exclude(deserialize, exclude, kwargs)
util.from_disk(path, deserialize, exclude)
return self