mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 18:07:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			181 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			181 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import spacy.language
 | 
						|
from spacy.language import Language, component
 | 
						|
from spacy.pipe_analysis import print_summary, validate_attrs
 | 
						|
from spacy.pipe_analysis import get_assigns_for_attr, get_requires_for_attr
 | 
						|
from spacy.pipe_analysis import count_pipeline_interdependencies
 | 
						|
from mock import Mock, ANY
 | 
						|
import pytest
 | 
						|
 | 
						|
 | 
						|
def test_component_decorator_function():
 | 
						|
    @component(name="test")
 | 
						|
    def test_component(doc):
 | 
						|
        """docstring"""
 | 
						|
        return doc
 | 
						|
 | 
						|
    assert test_component.name == "test"
 | 
						|
    assert test_component.__doc__ == "docstring"
 | 
						|
    assert test_component("foo") == "foo"
 | 
						|
 | 
						|
 | 
						|
def test_component_decorator_class():
 | 
						|
    @component(name="test")
 | 
						|
    class TestComponent(object):
 | 
						|
        """docstring1"""
 | 
						|
 | 
						|
        foo = "bar"
 | 
						|
 | 
						|
        def __call__(self, doc):
 | 
						|
            """docstring2"""
 | 
						|
            return doc
 | 
						|
 | 
						|
        def custom(self, x):
 | 
						|
            """docstring3"""
 | 
						|
            return x
 | 
						|
 | 
						|
    assert TestComponent.name == "test"
 | 
						|
    assert TestComponent.foo == "bar"
 | 
						|
    assert hasattr(TestComponent, "custom")
 | 
						|
    test_component = TestComponent()
 | 
						|
    assert test_component.foo == "bar"
 | 
						|
    assert test_component("foo") == "foo"
 | 
						|
    assert hasattr(test_component, "custom")
 | 
						|
    assert test_component.custom("bar") == "bar"
 | 
						|
    assert TestComponent.__doc__ == "docstring1"
 | 
						|
    assert TestComponent.__call__.__doc__ == "docstring2"
 | 
						|
    assert TestComponent.custom.__doc__ == "docstring3"
 | 
						|
    assert test_component.__doc__ == "docstring1"
 | 
						|
    assert test_component.__call__.__doc__ == "docstring2"
 | 
						|
    assert test_component.custom.__doc__ == "docstring3"
 | 
						|
 | 
						|
 | 
						|
def test_component_decorator_assigns():
 | 
						|
    spacy.language.ENABLE_PIPELINE_ANALYSIS = True
 | 
						|
 | 
						|
    @component("c1", assigns=["token.tag", "doc.tensor"])
 | 
						|
    def test_component1(doc):
 | 
						|
        return doc
 | 
						|
 | 
						|
    @component(
 | 
						|
        "c2", requires=["token.tag", "token.pos"], assigns=["token.lemma", "doc.tensor"]
 | 
						|
    )
 | 
						|
    def test_component2(doc):
 | 
						|
        return doc
 | 
						|
 | 
						|
    @component("c3", requires=["token.lemma"], assigns=["token._.custom_lemma"])
 | 
						|
    def test_component3(doc):
 | 
						|
        return doc
 | 
						|
 | 
						|
    assert "c1" in Language.factories
 | 
						|
    assert "c2" in Language.factories
 | 
						|
    assert "c3" in Language.factories
 | 
						|
 | 
						|
    nlp = Language()
 | 
						|
    nlp.add_pipe(test_component1)
 | 
						|
    with pytest.warns(UserWarning):
 | 
						|
        nlp.add_pipe(test_component2)
 | 
						|
    nlp.add_pipe(test_component3)
 | 
						|
    assigns_tensor = get_assigns_for_attr(nlp.pipeline, "doc.tensor")
 | 
						|
    assert [name for name, _ in assigns_tensor] == ["c1", "c2"]
 | 
						|
    test_component4 = nlp.create_pipe("c1")
 | 
						|
    assert test_component4.name == "c1"
 | 
						|
    assert test_component4.factory == "c1"
 | 
						|
    nlp.add_pipe(test_component4, name="c4")
 | 
						|
    assert nlp.pipe_names == ["c1", "c2", "c3", "c4"]
 | 
						|
    assert "c4" not in Language.factories
 | 
						|
    assert nlp.pipe_factories["c1"] == "c1"
 | 
						|
    assert nlp.pipe_factories["c4"] == "c1"
 | 
						|
    assigns_tensor = get_assigns_for_attr(nlp.pipeline, "doc.tensor")
 | 
						|
    assert [name for name, _ in assigns_tensor] == ["c1", "c2", "c4"]
 | 
						|
    requires_pos = get_requires_for_attr(nlp.pipeline, "token.pos")
 | 
						|
    assert [name for name, _ in requires_pos] == ["c2"]
 | 
						|
    assert print_summary(nlp, no_print=True)
 | 
						|
    assert nlp("hello world")
 | 
						|
 | 
						|
 | 
						|
def test_component_factories_from_nlp():
 | 
						|
    """Test that class components can implement a from_nlp classmethod that
 | 
						|
    gives them access to the nlp object and config via the factory."""
 | 
						|
 | 
						|
    class TestComponent5(object):
 | 
						|
        def __call__(self, doc):
 | 
						|
            return doc
 | 
						|
 | 
						|
    mock = Mock()
 | 
						|
    mock.return_value = TestComponent5()
 | 
						|
    TestComponent5.from_nlp = classmethod(mock)
 | 
						|
    TestComponent5 = component("c5")(TestComponent5)
 | 
						|
 | 
						|
    assert "c5" in Language.factories
 | 
						|
    nlp = Language()
 | 
						|
    pipe = nlp.create_pipe("c5", config={"foo": "bar"})
 | 
						|
    nlp.add_pipe(pipe)
 | 
						|
    assert nlp("hello world")
 | 
						|
    # The first argument here is the class itself, so we're accepting any here
 | 
						|
    # The model will be initialized to None by the factory
 | 
						|
    mock.assert_called_once_with(ANY, nlp, None, foo="bar")
 | 
						|
 | 
						|
 | 
						|
def test_analysis_validate_attrs_valid():
 | 
						|
    attrs = ["doc.sents", "doc.ents", "token.tag", "token._.xyz", "span._.xyz"]
 | 
						|
    assert validate_attrs(attrs)
 | 
						|
    for attr in attrs:
 | 
						|
        assert validate_attrs([attr])
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        validate_attrs(["doc.sents", "doc.xyz"])
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "attr",
 | 
						|
    [
 | 
						|
        "doc",
 | 
						|
        "doc_ents",
 | 
						|
        "doc.xyz",
 | 
						|
        "token.xyz",
 | 
						|
        "token.tag_",
 | 
						|
        "token.tag.xyz",
 | 
						|
        "token._.xyz.abc",
 | 
						|
        "span.label",
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_analysis_validate_attrs_invalid(attr):
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        validate_attrs([attr])
 | 
						|
 | 
						|
 | 
						|
def test_analysis_validate_attrs_remove_pipe():
 | 
						|
    """Test that attributes are validated correctly on remove."""
 | 
						|
    spacy.language.ENABLE_PIPELINE_ANALYSIS = True
 | 
						|
 | 
						|
    @component("c1", assigns=["token.tag"])
 | 
						|
    def c1(doc):
 | 
						|
        return doc
 | 
						|
 | 
						|
    @component("c2", requires=["token.pos"])
 | 
						|
    def c2(doc):
 | 
						|
        return doc
 | 
						|
 | 
						|
    nlp = Language()
 | 
						|
    nlp.add_pipe(c1)
 | 
						|
    with pytest.warns(UserWarning):
 | 
						|
        nlp.add_pipe(c2)
 | 
						|
    with pytest.warns(None) as record:
 | 
						|
        nlp.remove_pipe("c2")
 | 
						|
    assert not record.list
 | 
						|
 | 
						|
 | 
						|
def test_pipe_interdependencies():
 | 
						|
    class Fancifier:
 | 
						|
        name = "fancifier"
 | 
						|
        assigns = ("doc._.fancy",)
 | 
						|
        requires = tuple()
 | 
						|
 | 
						|
    class FancyNeeder:
 | 
						|
        name = "needer"
 | 
						|
        assigns = tuple()
 | 
						|
        requires = ("doc._.fancy",)
 | 
						|
 | 
						|
    pipeline = [("fancifier", Fancifier()), ("needer", FancyNeeder())]
 | 
						|
    counts = count_pipeline_interdependencies(pipeline)
 | 
						|
    assert counts == [1, 0]
 |