mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* Add pos and morph scoring to Scorer Add pos, morph, and morph_per_type to `Scorer`. Report pos and morph accuracy in `spacy evaluate`. * Update morphologizer for v3 * switch to tagger-based morphologizer * use `spacy.HashCharEmbedCNN` for morphologizer defaults * add `Doc.is_morphed` flag * Add morphologizer to train CLI * Add basic morphologizer pipeline tests * Add simple morphologizer training example * Remove subword_features from CharEmbed models Remove `subword_features` argument from `spacy.HashCharEmbedCNN.v1` and `spacy.HashCharEmbedBiLSTM.v1` since in these cases `subword_features` is always `False`. * Rename setting in morphologizer example Use `with_pos_tags` instead of `without_pos_tags`. * Fix kwargs for spacy.HashCharEmbedBiLSTM.v1 * Remove defaults for spacy.HashCharEmbedBiLSTM.v1 Remove default `nM/nC` for `spacy.HashCharEmbedBiLSTM.v1`. * Set random seed for textcat overfitting test
		
			
				
	
	
		
			50 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			50 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import pytest
 | 
						|
 | 
						|
from spacy import util
 | 
						|
from spacy.lang.en import English
 | 
						|
from spacy.language import Language
 | 
						|
from spacy.tests.util import make_tempdir
 | 
						|
 | 
						|
 | 
						|
def test_label_types():
 | 
						|
    nlp = Language()
 | 
						|
    nlp.add_pipe(nlp.create_pipe("morphologizer"))
 | 
						|
    nlp.get_pipe("morphologizer").add_label("Feat=A")
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.get_pipe("morphologizer").add_label(9)
 | 
						|
 | 
						|
 | 
						|
TRAIN_DATA = [
 | 
						|
    ("I like green eggs", {"morphs": ["Feat=N", "Feat=V", "Feat=J", "Feat=N"], "pos": ["NOUN", "VERB", "ADJ", "NOUN"]}),
 | 
						|
    ("Eat blue ham", {"morphs": ["Feat=V", "Feat=J", "Feat=N"], "pos": ["VERB", "ADJ", "NOUN"]}),
 | 
						|
]
 | 
						|
 | 
						|
 | 
						|
def test_overfitting_IO():
 | 
						|
    # Simple test to try and quickly overfit the morphologizer - ensuring the ML models work correctly
 | 
						|
    nlp = English()
 | 
						|
    morphologizer = nlp.create_pipe("morphologizer")
 | 
						|
    for inst in TRAIN_DATA:
 | 
						|
        for morph, pos in zip(inst[1]["morphs"], inst[1]["pos"]):
 | 
						|
            morphologizer.add_label(morph + "|POS=" + pos)
 | 
						|
    nlp.add_pipe(morphologizer)
 | 
						|
    optimizer = nlp.begin_training()
 | 
						|
 | 
						|
    for i in range(50):
 | 
						|
        losses = {}
 | 
						|
        nlp.update(TRAIN_DATA, sgd=optimizer, losses=losses)
 | 
						|
    assert losses["morphologizer"] < 0.00001
 | 
						|
 | 
						|
    # test the trained model
 | 
						|
    test_text = "I like blue eggs"
 | 
						|
    doc = nlp(test_text)
 | 
						|
    gold_morphs = ["Feat=N|POS=NOUN", "Feat=V|POS=VERB", "Feat=J|POS=ADJ", "Feat=N|POS=NOUN"]
 | 
						|
    assert gold_morphs == [t.morph_ for t in doc]
 | 
						|
 | 
						|
    # Also test the results are still the same after IO
 | 
						|
    with make_tempdir() as tmp_dir:
 | 
						|
        nlp.to_disk(tmp_dir)
 | 
						|
        nlp2 = util.load_model_from_path(tmp_dir)
 | 
						|
        doc2 = nlp2(test_text)
 | 
						|
        assert gold_morphs == [t.morph_ for t in doc2]
 |