mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			49 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			49 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
//- 💫 DOCS > API > ANNOTATION > TRAINING
 | 
						|
 | 
						|
p
 | 
						|
    |  spaCy takes training data in JSON format. The built-in
 | 
						|
    |  #[+api("cli#convert") #[code convert]] command helps you convert the
 | 
						|
    |  #[code .conllu] format used by the
 | 
						|
    |  #[+a("https://github.com/UniversalDependencies") Universal Dependencies corpora]
 | 
						|
    |  to spaCy's training format.
 | 
						|
 | 
						|
+aside("Annotating entities")
 | 
						|
    |  Named entities are provided in the #[+a("/api/annotation#biluo") BILUO]
 | 
						|
    |  notation. Tokens outside an entity are set to #[code "O"] and tokens
 | 
						|
    |  that are part of an entity are set to the entity label, prefixed by the
 | 
						|
    |  BILUO marker. For example #[code "B-ORG"] describes the first token of
 | 
						|
    |  a multi-token #[code ORG] entity and #[code "U-PERSON"] a single
 | 
						|
    |  token representing a #[code PERSON] entity. The
 | 
						|
    |  #[+api("goldparse#biluo_tags_from_offsets") #[code biluo_tags_from_offsets]]
 | 
						|
    |  function can help you convert entity offsets to the right format.
 | 
						|
 | 
						|
+code("Example structure").
 | 
						|
    [{
 | 
						|
        "id": int,                      # ID of the document within the corpus
 | 
						|
        "paragraphs": [{                # list of paragraphs in the corpus
 | 
						|
            "raw": string,              # raw text of the paragraph
 | 
						|
            "sentences": [{             # list of sentences in the paragraph
 | 
						|
                "tokens": [{            # list of tokens in the sentence
 | 
						|
                    "id": int,          # index of the token in the document
 | 
						|
                    "dep": string,      # dependency label
 | 
						|
                    "head": int,        # offset of token head relative to token index
 | 
						|
                    "tag": string,      # part-of-speech tag
 | 
						|
                    "orth": string,     # verbatim text of the token
 | 
						|
                    "ner": string       # BILUO label, e.g. "O" or "B-ORG"
 | 
						|
                }],
 | 
						|
                "brackets": [{          # phrase structure (NOT USED by current models)
 | 
						|
                    "first": int,       # index of first token
 | 
						|
                    "last": int,        # index of last token
 | 
						|
                    "label": string     # phrase label
 | 
						|
                }]
 | 
						|
            }]
 | 
						|
        }]
 | 
						|
    }]
 | 
						|
 | 
						|
p
 | 
						|
    |  Here's an example of dependencies, part-of-speech tags and names
 | 
						|
    |  entities, taken from the English Wall Street Journal portion of the Penn
 | 
						|
    |  Treebank:
 | 
						|
 | 
						|
+github("spacy", "examples/training/training-data.json", false, false, "json")
 |