mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-07 15:56:32 +03:00
78 lines
2.1 KiB
Cython
78 lines
2.1 KiB
Cython
from typing import List
|
|
|
|
import numpy
|
|
|
|
from ..errors import Errors
|
|
|
|
from libc.stdint cimport int32_t
|
|
|
|
|
|
cdef class AlignmentArray:
|
|
"""AlignmentArray is similar to Thinc's Ragged with two simplfications:
|
|
indexing returns numpy arrays and this type can only be used for CPU arrays.
|
|
However, these changes make AlignmentArray more efficient for indexing in a
|
|
tight loop."""
|
|
|
|
__slots__ = []
|
|
|
|
def __init__(self, alignment: List[List[int]]):
|
|
cdef int data_len = 0
|
|
cdef int outer_len
|
|
cdef int idx
|
|
|
|
self._starts_ends = numpy.zeros(len(alignment) + 1, dtype='int32')
|
|
cdef int32_t* starts_ends_ptr = <int32_t*>self._starts_ends.data
|
|
|
|
for idx, outer in enumerate(alignment):
|
|
outer_len = len(outer)
|
|
starts_ends_ptr[idx + 1] = starts_ends_ptr[idx] + outer_len
|
|
data_len += outer_len
|
|
|
|
self._lengths = None
|
|
self._data = numpy.empty(data_len, dtype="int32")
|
|
|
|
idx = 0
|
|
cdef int32_t* data_ptr = <int32_t*>self._data.data
|
|
|
|
for outer in alignment:
|
|
for inner in outer:
|
|
data_ptr[idx] = inner
|
|
idx += 1
|
|
|
|
def __getitem__(self, idx):
|
|
starts = self._starts_ends[:-1]
|
|
ends = self._starts_ends[1:]
|
|
if isinstance(idx, int):
|
|
start = starts[idx]
|
|
end = ends[idx]
|
|
elif isinstance(idx, slice):
|
|
if not (idx.step is None or idx.step == 1):
|
|
raise ValueError(Errors.E1027)
|
|
start = starts[idx]
|
|
if len(start) == 0:
|
|
return self._data[0:0]
|
|
start = start[0]
|
|
end = ends[idx][-1]
|
|
else:
|
|
raise ValueError(Errors.E1028)
|
|
|
|
return self._data[start:end]
|
|
|
|
@property
|
|
def data(self):
|
|
return self._data
|
|
|
|
@property
|
|
def lengths(self):
|
|
if self._lengths is None:
|
|
self._lengths = self.ends - self.starts
|
|
return self._lengths
|
|
|
|
@property
|
|
def ends(self):
|
|
return self._starts_ends[1:]
|
|
|
|
@property
|
|
def starts(self):
|
|
return self._starts_ends[:-1]
|