mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	* Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
		
			
				
	
	
		
			333 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			333 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pytest
 | |
| 
 | |
| from spacy.kb import KnowledgeBase
 | |
| 
 | |
| from spacy import util, registry
 | |
| from spacy.gold import Example
 | |
| from spacy.lang.en import English
 | |
| from spacy.tests.util import make_tempdir
 | |
| from spacy.tokens import Span
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def nlp():
 | |
|     return English()
 | |
| 
 | |
| 
 | |
| def assert_almost_equal(a, b):
 | |
|     delta = 0.0001
 | |
|     assert a - delta <= b <= a + delta
 | |
| 
 | |
| 
 | |
| def test_kb_valid_entities(nlp):
 | |
|     """Test the valid construction of a KB with 3 entities and two aliases"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=19, entity_vector=[8, 4, 3])
 | |
|     mykb.add_entity(entity="Q2", freq=5, entity_vector=[2, 1, 0])
 | |
|     mykb.add_entity(entity="Q3", freq=25, entity_vector=[-1, -6, 5])
 | |
| 
 | |
|     # adding aliases
 | |
|     mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.2])
 | |
|     mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
 | |
| 
 | |
|     # test the size of the corresponding KB
 | |
|     assert mykb.get_size_entities() == 3
 | |
|     assert mykb.get_size_aliases() == 2
 | |
| 
 | |
|     # test retrieval of the entity vectors
 | |
|     assert mykb.get_vector("Q1") == [8, 4, 3]
 | |
|     assert mykb.get_vector("Q2") == [2, 1, 0]
 | |
|     assert mykb.get_vector("Q3") == [-1, -6, 5]
 | |
| 
 | |
|     # test retrieval of prior probabilities
 | |
|     assert_almost_equal(mykb.get_prior_prob(entity="Q2", alias="douglas"), 0.8)
 | |
|     assert_almost_equal(mykb.get_prior_prob(entity="Q3", alias="douglas"), 0.2)
 | |
|     assert_almost_equal(mykb.get_prior_prob(entity="Q342", alias="douglas"), 0.0)
 | |
|     assert_almost_equal(mykb.get_prior_prob(entity="Q3", alias="douglassssss"), 0.0)
 | |
| 
 | |
| 
 | |
| def test_kb_invalid_entities(nlp):
 | |
|     """Test the invalid construction of a KB with an alias linked to a non-existing entity"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
 | |
|     mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
 | |
|     mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
 | |
| 
 | |
|     # adding aliases - should fail because one of the given IDs is not valid
 | |
|     with pytest.raises(ValueError):
 | |
|         mykb.add_alias(
 | |
|             alias="douglas", entities=["Q2", "Q342"], probabilities=[0.8, 0.2]
 | |
|         )
 | |
| 
 | |
| 
 | |
| def test_kb_invalid_probabilities(nlp):
 | |
|     """Test the invalid construction of a KB with wrong prior probabilities"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
 | |
|     mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
 | |
|     mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
 | |
| 
 | |
|     # adding aliases - should fail because the sum of the probabilities exceeds 1
 | |
|     with pytest.raises(ValueError):
 | |
|         mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.4])
 | |
| 
 | |
| 
 | |
| def test_kb_invalid_combination(nlp):
 | |
|     """Test the invalid construction of a KB with non-matching entity and probability lists"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
 | |
|     mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
 | |
|     mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
 | |
| 
 | |
|     # adding aliases - should fail because the entities and probabilities vectors are not of equal length
 | |
|     with pytest.raises(ValueError):
 | |
|         mykb.add_alias(
 | |
|             alias="douglas", entities=["Q2", "Q3"], probabilities=[0.3, 0.4, 0.1]
 | |
|         )
 | |
| 
 | |
| 
 | |
| def test_kb_invalid_entity_vector(nlp):
 | |
|     """Test the invalid construction of a KB with non-matching entity vector lengths"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=19, entity_vector=[1, 2, 3])
 | |
| 
 | |
|     # this should fail because the kb's expected entity vector length is 3
 | |
|     with pytest.raises(ValueError):
 | |
|         mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
 | |
| 
 | |
| 
 | |
| def test_candidate_generation(nlp):
 | |
|     """Test correct candidate generation"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
 | |
|     mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
 | |
|     mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
 | |
| 
 | |
|     # adding aliases
 | |
|     mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1])
 | |
|     mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
 | |
| 
 | |
|     # test the size of the relevant candidates
 | |
|     assert len(mykb.get_candidates("douglas")) == 2
 | |
|     assert len(mykb.get_candidates("adam")) == 1
 | |
|     assert len(mykb.get_candidates("shrubbery")) == 0
 | |
| 
 | |
|     # test the content of the candidates
 | |
|     assert mykb.get_candidates("adam")[0].entity_ == "Q2"
 | |
|     assert mykb.get_candidates("adam")[0].alias_ == "adam"
 | |
|     assert_almost_equal(mykb.get_candidates("adam")[0].entity_freq, 12)
 | |
|     assert_almost_equal(mykb.get_candidates("adam")[0].prior_prob, 0.9)
 | |
| 
 | |
| 
 | |
| def test_append_alias(nlp):
 | |
|     """Test that we can append additional alias-entity pairs"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
 | |
|     mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
 | |
|     mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
 | |
| 
 | |
|     # adding aliases
 | |
|     mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.4, 0.1])
 | |
|     mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
 | |
| 
 | |
|     # test the size of the relevant candidates
 | |
|     assert len(mykb.get_candidates("douglas")) == 2
 | |
| 
 | |
|     # append an alias
 | |
|     mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.2)
 | |
| 
 | |
|     # test the size of the relevant candidates has been incremented
 | |
|     assert len(mykb.get_candidates("douglas")) == 3
 | |
| 
 | |
|     # append the same alias-entity pair again should not work (will throw a warning)
 | |
|     with pytest.warns(UserWarning):
 | |
|         mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.3)
 | |
| 
 | |
|     # test the size of the relevant candidates remained unchanged
 | |
|     assert len(mykb.get_candidates("douglas")) == 3
 | |
| 
 | |
| 
 | |
| def test_append_invalid_alias(nlp):
 | |
|     """Test that append an alias will throw an error if prior probs are exceeding 1"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
 | |
|     mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
 | |
|     mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
 | |
| 
 | |
|     # adding aliases
 | |
|     mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1])
 | |
|     mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
 | |
| 
 | |
|     # append an alias - should fail because the entities and probabilities vectors are not of equal length
 | |
|     with pytest.raises(ValueError):
 | |
|         mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.2)
 | |
| 
 | |
| 
 | |
| def test_preserving_links_asdoc(nlp):
 | |
|     """Test that Span.as_doc preserves the existing entity links"""
 | |
| 
 | |
|     @registry.assets.register("myLocationsKB.v1")
 | |
|     def dummy_kb() -> KnowledgeBase:
 | |
|         mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | |
|         # adding entities
 | |
|         mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
 | |
|         mykb.add_entity(entity="Q2", freq=8, entity_vector=[1])
 | |
|         # adding aliases
 | |
|         mykb.add_alias(alias="Boston", entities=["Q1"], probabilities=[0.7])
 | |
|         mykb.add_alias(alias="Denver", entities=["Q2"], probabilities=[0.6])
 | |
|         return mykb
 | |
| 
 | |
|     # set up pipeline with NER (Entity Ruler) and NEL (prior probability only, model not trained)
 | |
|     nlp.add_pipe("sentencizer")
 | |
|     patterns = [
 | |
|         {"label": "GPE", "pattern": "Boston"},
 | |
|         {"label": "GPE", "pattern": "Denver"},
 | |
|     ]
 | |
|     ruler = nlp.add_pipe("entity_ruler")
 | |
|     ruler.add_patterns(patterns)
 | |
|     el_config = {"kb": {"@assets": "myLocationsKB.v1"}, "incl_prior": False}
 | |
|     el_pipe = nlp.add_pipe("entity_linker", config=el_config, last=True)
 | |
|     el_pipe.begin_training()
 | |
|     el_pipe.incl_context = False
 | |
|     el_pipe.incl_prior = True
 | |
| 
 | |
|     # test whether the entity links are preserved by the `as_doc()` function
 | |
|     text = "She lives in Boston. He lives in Denver."
 | |
|     doc = nlp(text)
 | |
|     for ent in doc.ents:
 | |
|         orig_text = ent.text
 | |
|         orig_kb_id = ent.kb_id_
 | |
|         sent_doc = ent.sent.as_doc()
 | |
|         for s_ent in sent_doc.ents:
 | |
|             if s_ent.text == orig_text:
 | |
|                 assert s_ent.kb_id_ == orig_kb_id
 | |
| 
 | |
| 
 | |
| def test_preserving_links_ents(nlp):
 | |
|     """Test that doc.ents preserves KB annotations"""
 | |
|     text = "She lives in Boston. He lives in Denver."
 | |
|     doc = nlp(text)
 | |
|     assert len(list(doc.ents)) == 0
 | |
| 
 | |
|     boston_ent = Span(doc, 3, 4, label="LOC", kb_id="Q1")
 | |
|     doc.ents = [boston_ent]
 | |
|     assert len(list(doc.ents)) == 1
 | |
|     assert list(doc.ents)[0].label_ == "LOC"
 | |
|     assert list(doc.ents)[0].kb_id_ == "Q1"
 | |
| 
 | |
| 
 | |
| def test_preserving_links_ents_2(nlp):
 | |
|     """Test that doc.ents preserves KB annotations"""
 | |
|     text = "She lives in Boston. He lives in Denver."
 | |
|     doc = nlp(text)
 | |
|     assert len(list(doc.ents)) == 0
 | |
| 
 | |
|     loc = doc.vocab.strings.add("LOC")
 | |
|     q1 = doc.vocab.strings.add("Q1")
 | |
| 
 | |
|     doc.ents = [(loc, q1, 3, 4)]
 | |
|     assert len(list(doc.ents)) == 1
 | |
|     assert list(doc.ents)[0].label_ == "LOC"
 | |
|     assert list(doc.ents)[0].kb_id_ == "Q1"
 | |
| 
 | |
| 
 | |
| # fmt: off
 | |
| TRAIN_DATA = [
 | |
|     ("Russ Cochran captured his first major title with his son as caddie.",
 | |
|         {"links": {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}},
 | |
|          "entities": [(0, 12, "PERSON")]}),
 | |
|     ("Russ Cochran his reprints include EC Comics.",
 | |
|         {"links": {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}},
 | |
|          "entities": [(0, 12, "PERSON")]}),
 | |
|     ("Russ Cochran has been publishing comic art.",
 | |
|         {"links": {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}},
 | |
|          "entities": [(0, 12, "PERSON")]}),
 | |
|     ("Russ Cochran was a member of University of Kentucky's golf team.",
 | |
|         {"links": {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}},
 | |
|          "entities": [(0, 12, "PERSON"), (43, 51, "LOC")]}),
 | |
| ]
 | |
| GOLD_entities = ["Q2146908", "Q7381115", "Q7381115", "Q2146908"]
 | |
| # fmt: on
 | |
| 
 | |
| 
 | |
| def test_overfitting_IO():
 | |
|     # Simple test to try and quickly overfit the NEL component - ensuring the ML models work correctly
 | |
|     nlp = English()
 | |
|     nlp.add_pipe("sentencizer")
 | |
| 
 | |
|     # Add a custom component to recognize "Russ Cochran" as an entity for the example training data
 | |
|     patterns = [
 | |
|         {"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]}
 | |
|     ]
 | |
|     ruler = nlp.add_pipe("entity_ruler")
 | |
|     ruler.add_patterns(patterns)
 | |
| 
 | |
|     # Convert the texts to docs to make sure we have doc.ents set for the training examples
 | |
|     train_examples = []
 | |
|     for text, annotation in TRAIN_DATA:
 | |
|         doc = nlp(text)
 | |
|         train_examples.append(Example.from_dict(doc, annotation))
 | |
| 
 | |
|     @registry.assets.register("myOverfittingKB.v1")
 | |
|     def dummy_kb() -> KnowledgeBase:
 | |
|         # create artificial KB - assign same prior weight to the two russ cochran's
 | |
|         # Q2146908 (Russ Cochran): American golfer
 | |
|         # Q7381115 (Russ Cochran): publisher
 | |
|         mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3)
 | |
|         mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
 | |
|         mykb.add_entity(entity="Q7381115", freq=12, entity_vector=[9, 1, -7])
 | |
|         mykb.add_alias(
 | |
|             alias="Russ Cochran",
 | |
|             entities=["Q2146908", "Q7381115"],
 | |
|             probabilities=[0.5, 0.5],
 | |
|         )
 | |
|         return mykb
 | |
| 
 | |
|     # Create the Entity Linker component and add it to the pipeline
 | |
|     nlp.add_pipe(
 | |
|         "entity_linker", config={"kb": {"@assets": "myOverfittingKB.v1"}}, last=True
 | |
|     )
 | |
| 
 | |
|     # train the NEL pipe
 | |
|     optimizer = nlp.begin_training()
 | |
|     for i in range(50):
 | |
|         losses = {}
 | |
|         nlp.update(train_examples, sgd=optimizer, losses=losses)
 | |
|     assert losses["entity_linker"] < 0.001
 | |
| 
 | |
|     # test the trained model
 | |
|     predictions = []
 | |
|     for text, annotation in TRAIN_DATA:
 | |
|         doc = nlp(text)
 | |
|         for ent in doc.ents:
 | |
|             predictions.append(ent.kb_id_)
 | |
|     assert predictions == GOLD_entities
 | |
| 
 | |
|     # Also test the results are still the same after IO
 | |
|     with make_tempdir() as tmp_dir:
 | |
|         nlp.to_disk(tmp_dir)
 | |
|         nlp2 = util.load_model_from_path(tmp_dir)
 | |
|         assert nlp2.pipe_names == nlp.pipe_names
 | |
|         predictions = []
 | |
|         for text, annotation in TRAIN_DATA:
 | |
|             doc2 = nlp2(text)
 | |
|             for ent in doc2.ents:
 | |
|                 predictions.append(ent.kb_id_)
 | |
|         assert predictions == GOLD_entities
 |