mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			377 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			377 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pytest
 | |
| from spacy.language import Language
 | |
| from spacy.lang.en import English
 | |
| from spacy.lang.de import German
 | |
| from spacy.tokens import Doc
 | |
| from spacy.util import registry, SimpleFrozenDict, combine_score_weights
 | |
| from thinc.api import Model, Linear
 | |
| from thinc.config import ConfigValidationError
 | |
| from pydantic import StrictInt, StrictStr
 | |
| 
 | |
| 
 | |
| def test_pipe_function_component():
 | |
|     name = "test_component"
 | |
| 
 | |
|     @Language.component(name)
 | |
|     def component(doc: Doc) -> Doc:
 | |
|         return doc
 | |
| 
 | |
|     assert name in registry.factories
 | |
|     nlp = Language()
 | |
|     with pytest.raises(ValueError):
 | |
|         nlp.add_pipe(component)
 | |
|     nlp.add_pipe(name)
 | |
|     assert name in nlp.pipe_names
 | |
|     assert nlp.pipe_factories[name] == name
 | |
|     assert Language.get_factory_meta(name)
 | |
|     assert nlp.get_pipe_meta(name)
 | |
|     pipe = nlp.get_pipe(name)
 | |
|     assert pipe == component
 | |
|     pipe = nlp.create_pipe(name)
 | |
|     assert pipe == component
 | |
| 
 | |
| 
 | |
| def test_pipe_class_component_init():
 | |
|     name1 = "test_class_component1"
 | |
|     name2 = "test_class_component2"
 | |
| 
 | |
|     @Language.factory(name1)
 | |
|     class Component1:
 | |
|         def __init__(self, nlp: Language, name: str):
 | |
|             self.nlp = nlp
 | |
| 
 | |
|         def __call__(self, doc: Doc) -> Doc:
 | |
|             return doc
 | |
| 
 | |
|     class Component2:
 | |
|         def __init__(self, nlp: Language, name: str):
 | |
|             self.nlp = nlp
 | |
| 
 | |
|         def __call__(self, doc: Doc) -> Doc:
 | |
|             return doc
 | |
| 
 | |
|     @Language.factory(name2)
 | |
|     def factory(nlp: Language, name=name2):
 | |
|         return Component2(nlp, name)
 | |
| 
 | |
|     nlp = Language()
 | |
|     for name, Component in [(name1, Component1), (name2, Component2)]:
 | |
|         assert name in registry.factories
 | |
|         with pytest.raises(ValueError):
 | |
|             nlp.add_pipe(Component(nlp, name))
 | |
|         nlp.add_pipe(name)
 | |
|         assert name in nlp.pipe_names
 | |
|         assert nlp.pipe_factories[name] == name
 | |
|         assert Language.get_factory_meta(name)
 | |
|         assert nlp.get_pipe_meta(name)
 | |
|         pipe = nlp.get_pipe(name)
 | |
|         assert isinstance(pipe, Component)
 | |
|         assert isinstance(pipe.nlp, Language)
 | |
|         pipe = nlp.create_pipe(name)
 | |
|         assert isinstance(pipe, Component)
 | |
|         assert isinstance(pipe.nlp, Language)
 | |
| 
 | |
| 
 | |
| def test_pipe_class_component_config():
 | |
|     name = "test_class_component_config"
 | |
| 
 | |
|     @Language.factory(name)
 | |
|     class Component:
 | |
|         def __init__(
 | |
|             self, nlp: Language, name: str, value1: StrictInt, value2: StrictStr
 | |
|         ):
 | |
|             self.nlp = nlp
 | |
|             self.value1 = value1
 | |
|             self.value2 = value2
 | |
|             self.is_base = True
 | |
| 
 | |
|         def __call__(self, doc: Doc) -> Doc:
 | |
|             return doc
 | |
| 
 | |
|     @English.factory(name)
 | |
|     class ComponentEN:
 | |
|         def __init__(
 | |
|             self, nlp: Language, name: str, value1: StrictInt, value2: StrictStr
 | |
|         ):
 | |
|             self.nlp = nlp
 | |
|             self.value1 = value1
 | |
|             self.value2 = value2
 | |
|             self.is_base = False
 | |
| 
 | |
|         def __call__(self, doc: Doc) -> Doc:
 | |
|             return doc
 | |
| 
 | |
|     nlp = Language()
 | |
|     with pytest.raises(ConfigValidationError):  # no config provided
 | |
|         nlp.add_pipe(name)
 | |
|     with pytest.raises(ConfigValidationError):  # invalid config
 | |
|         nlp.add_pipe(name, config={"value1": "10", "value2": "hello"})
 | |
|     nlp.add_pipe(name, config={"value1": 10, "value2": "hello"})
 | |
|     pipe = nlp.get_pipe(name)
 | |
|     assert isinstance(pipe.nlp, Language)
 | |
|     assert pipe.value1 == 10
 | |
|     assert pipe.value2 == "hello"
 | |
|     assert pipe.is_base is True
 | |
| 
 | |
|     nlp_en = English()
 | |
|     with pytest.raises(ConfigValidationError):  # invalid config
 | |
|         nlp_en.add_pipe(name, config={"value1": "10", "value2": "hello"})
 | |
|     nlp_en.add_pipe(name, config={"value1": 10, "value2": "hello"})
 | |
|     pipe = nlp_en.get_pipe(name)
 | |
|     assert isinstance(pipe.nlp, English)
 | |
|     assert pipe.value1 == 10
 | |
|     assert pipe.value2 == "hello"
 | |
|     assert pipe.is_base is False
 | |
| 
 | |
| 
 | |
| def test_pipe_class_component_defaults():
 | |
|     name = "test_class_component_defaults"
 | |
| 
 | |
|     @Language.factory(name)
 | |
|     class Component:
 | |
|         def __init__(
 | |
|             self,
 | |
|             nlp: Language,
 | |
|             name: str,
 | |
|             value1: StrictInt = 10,
 | |
|             value2: StrictStr = "hello",
 | |
|         ):
 | |
|             self.nlp = nlp
 | |
|             self.value1 = value1
 | |
|             self.value2 = value2
 | |
| 
 | |
|         def __call__(self, doc: Doc) -> Doc:
 | |
|             return doc
 | |
| 
 | |
|     nlp = Language()
 | |
|     nlp.add_pipe(name)
 | |
|     pipe = nlp.get_pipe(name)
 | |
|     assert isinstance(pipe.nlp, Language)
 | |
|     assert pipe.value1 == 10
 | |
|     assert pipe.value2 == "hello"
 | |
| 
 | |
| 
 | |
| def test_pipe_class_component_model():
 | |
|     name = "test_class_component_model"
 | |
|     default_config = {
 | |
|         "model": {
 | |
|             "@architectures": "spacy.TextCatEnsemble.v1",
 | |
|             "exclusive_classes": False,
 | |
|             "pretrained_vectors": None,
 | |
|             "width": 64,
 | |
|             "embed_size": 2000,
 | |
|             "window_size": 1,
 | |
|             "conv_depth": 2,
 | |
|             "ngram_size": 1,
 | |
|             "dropout": None,
 | |
|         },
 | |
|         "value1": 10,
 | |
|     }
 | |
| 
 | |
|     @Language.factory(name, default_config=default_config)
 | |
|     class Component:
 | |
|         def __init__(self, nlp: Language, model: Model, name: str, value1: StrictInt):
 | |
|             self.nlp = nlp
 | |
|             self.model = model
 | |
|             self.value1 = value1
 | |
|             self.name = name
 | |
| 
 | |
|         def __call__(self, doc: Doc) -> Doc:
 | |
|             return doc
 | |
| 
 | |
|     nlp = Language()
 | |
|     nlp.add_pipe(name)
 | |
|     pipe = nlp.get_pipe(name)
 | |
|     assert isinstance(pipe.nlp, Language)
 | |
|     assert pipe.value1 == 10
 | |
|     assert isinstance(pipe.model, Model)
 | |
| 
 | |
| 
 | |
| def test_pipe_class_component_model_custom():
 | |
|     name = "test_class_component_model_custom"
 | |
|     arch = f"{name}.arch"
 | |
|     default_config = {"value1": 1, "model": {"@architectures": arch, "nO": 0, "nI": 0}}
 | |
| 
 | |
|     @Language.factory(name, default_config=default_config)
 | |
|     class Component:
 | |
|         def __init__(
 | |
|             self, nlp: Language, model: Model, name: str, value1: StrictInt = 10
 | |
|         ):
 | |
|             self.nlp = nlp
 | |
|             self.model = model
 | |
|             self.value1 = value1
 | |
|             self.name = name
 | |
| 
 | |
|         def __call__(self, doc: Doc) -> Doc:
 | |
|             return doc
 | |
| 
 | |
|     @registry.architectures(arch)
 | |
|     def make_custom_arch(nO: StrictInt, nI: StrictInt):
 | |
|         return Linear(nO, nI)
 | |
| 
 | |
|     nlp = Language()
 | |
|     config = {"value1": 20, "model": {"@architectures": arch, "nO": 1, "nI": 2}}
 | |
|     nlp.add_pipe(name, config=config)
 | |
|     pipe = nlp.get_pipe(name)
 | |
|     assert isinstance(pipe.nlp, Language)
 | |
|     assert pipe.value1 == 20
 | |
|     assert isinstance(pipe.model, Model)
 | |
|     assert pipe.model.name == "linear"
 | |
| 
 | |
|     nlp = Language()
 | |
|     with pytest.raises(ConfigValidationError):
 | |
|         config = {"value1": "20", "model": {"@architectures": arch, "nO": 1, "nI": 2}}
 | |
|         nlp.add_pipe(name, config=config)
 | |
|     with pytest.raises(ConfigValidationError):
 | |
|         config = {"value1": 20, "model": {"@architectures": arch, "nO": 1.0, "nI": 2.0}}
 | |
|         nlp.add_pipe(name, config=config)
 | |
| 
 | |
| 
 | |
| def test_pipe_factories_wrong_formats():
 | |
|     with pytest.raises(ValueError):
 | |
|         # Decorator is not called
 | |
|         @Language.component
 | |
|         def component(foo: int, bar: str):
 | |
|             ...
 | |
| 
 | |
|     with pytest.raises(ValueError):
 | |
|         # Decorator is not called
 | |
|         @Language.factory
 | |
|         def factory1(foo: int, bar: str):
 | |
|             ...
 | |
| 
 | |
|     with pytest.raises(ValueError):
 | |
|         # Factory function is missing "nlp" and "name" arguments
 | |
|         @Language.factory("test_pipe_factories_missing_args")
 | |
|         def factory2(foo: int, bar: str):
 | |
|             ...
 | |
| 
 | |
| 
 | |
| def test_pipe_factory_meta_config_cleanup():
 | |
|     """Test that component-specific meta and config entries are represented
 | |
|     correctly and cleaned up when pipes are removed, replaced or renamed."""
 | |
|     nlp = Language()
 | |
|     nlp.add_pipe("ner", name="ner_component")
 | |
|     nlp.add_pipe("textcat")
 | |
|     assert nlp.get_factory_meta("ner")
 | |
|     assert nlp.get_pipe_meta("ner_component")
 | |
|     assert nlp.get_pipe_config("ner_component")
 | |
|     assert nlp.get_factory_meta("textcat")
 | |
|     assert nlp.get_pipe_meta("textcat")
 | |
|     assert nlp.get_pipe_config("textcat")
 | |
|     nlp.rename_pipe("textcat", "tc")
 | |
|     assert nlp.get_pipe_meta("tc")
 | |
|     assert nlp.get_pipe_config("tc")
 | |
|     with pytest.raises(ValueError):
 | |
|         nlp.remove_pipe("ner")
 | |
|     nlp.remove_pipe("ner_component")
 | |
|     assert "ner_component" not in nlp._pipe_meta
 | |
|     assert "ner_component" not in nlp._pipe_configs
 | |
|     with pytest.raises(ValueError):
 | |
|         nlp.replace_pipe("textcat", "parser")
 | |
|     nlp.replace_pipe("tc", "parser")
 | |
|     assert nlp.get_factory_meta("parser")
 | |
|     assert nlp.get_pipe_meta("tc").factory == "parser"
 | |
| 
 | |
| 
 | |
| def test_pipe_factories_empty_dict_default():
 | |
|     """Test that default config values can be empty dicts and that no config
 | |
|     validation error is raised."""
 | |
|     # TODO: fix this
 | |
|     name = "test_pipe_factories_empty_dict_default"
 | |
| 
 | |
|     @Language.factory(name, default_config={"foo": {}})
 | |
|     def factory(nlp: Language, name: str, foo: dict):
 | |
|         ...
 | |
| 
 | |
|     nlp = Language()
 | |
|     nlp.create_pipe(name)
 | |
| 
 | |
| 
 | |
| def test_pipe_factories_language_specific():
 | |
|     """Test that language sub-classes can have their own factories, with
 | |
|     fallbacks to the base factories."""
 | |
|     name1 = "specific_component1"
 | |
|     name2 = "specific_component2"
 | |
|     Language.component(name1, func=lambda: "base")
 | |
|     English.component(name1, func=lambda: "en")
 | |
|     German.component(name2, func=lambda: "de")
 | |
| 
 | |
|     assert Language.has_factory(name1)
 | |
|     assert not Language.has_factory(name2)
 | |
|     assert English.has_factory(name1)
 | |
|     assert not English.has_factory(name2)
 | |
|     assert German.has_factory(name1)
 | |
|     assert German.has_factory(name2)
 | |
| 
 | |
|     nlp = Language()
 | |
|     assert nlp.create_pipe(name1)() == "base"
 | |
|     with pytest.raises(ValueError):
 | |
|         nlp.create_pipe(name2)
 | |
|     nlp_en = English()
 | |
|     assert nlp_en.create_pipe(name1)() == "en"
 | |
|     with pytest.raises(ValueError):
 | |
|         nlp_en.create_pipe(name2)
 | |
|     nlp_de = German()
 | |
|     assert nlp_de.create_pipe(name1)() == "base"
 | |
|     assert nlp_de.create_pipe(name2)() == "de"
 | |
| 
 | |
| 
 | |
| def test_language_factories_invalid():
 | |
|     """Test that assigning directly to Language.factories is now invalid and
 | |
|     raises a custom error."""
 | |
|     assert isinstance(Language.factories, SimpleFrozenDict)
 | |
|     with pytest.raises(NotImplementedError):
 | |
|         Language.factories["foo"] = "bar"
 | |
|     nlp = Language()
 | |
|     assert isinstance(nlp.factories, SimpleFrozenDict)
 | |
|     assert len(nlp.factories)
 | |
|     with pytest.raises(NotImplementedError):
 | |
|         nlp.factories["foo"] = "bar"
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "weights,expected",
 | |
|     [
 | |
|         ([{"a": 1.0}, {"b": 1.0}, {"c": 1.0}], {"a": 0.33, "b": 0.33, "c": 0.33}),
 | |
|         ([{"a": 1.0}, {"b": 50}, {"c": 123}], {"a": 0.33, "b": 0.33, "c": 0.33}),
 | |
|         (
 | |
|             [{"a": 0.7, "b": 0.3}, {"c": 1.0}, {"d": 0.5, "e": 0.5}],
 | |
|             {"a": 0.23, "b": 0.1, "c": 0.33, "d": 0.17, "e": 0.17},
 | |
|         ),
 | |
|         (
 | |
|             [{"a": 100, "b": 400}, {"c": 0.5, "d": 0.5}],
 | |
|             {"a": 0.1, "b": 0.4, "c": 0.25, "d": 0.25},
 | |
|         ),
 | |
|         ([{"a": 0.5, "b": 0.5}, {"b": 1.0}], {"a": 0.25, "b": 0.75},),
 | |
|     ],
 | |
| )
 | |
| def test_language_factories_combine_score_weights(weights, expected):
 | |
|     result = combine_score_weights(weights)
 | |
|     assert sum(result.values()) in (0.99, 1.0)
 | |
|     assert result == expected
 | |
| 
 | |
| 
 | |
| def test_language_factories_scores():
 | |
|     name = "test_language_factories_scores"
 | |
|     func = lambda doc: doc
 | |
|     weights1 = {"a1": 0.5, "a2": 0.5}
 | |
|     weights2 = {"b1": 0.2, "b2": 0.7, "b3": 0.1}
 | |
|     Language.component(
 | |
|         f"{name}1", scores=list(weights1), default_score_weights=weights1, func=func,
 | |
|     )
 | |
|     Language.component(
 | |
|         f"{name}2", scores=list(weights2), default_score_weights=weights2, func=func,
 | |
|     )
 | |
|     meta1 = Language.get_factory_meta(f"{name}1")
 | |
|     assert meta1.default_score_weights == weights1
 | |
|     meta2 = Language.get_factory_meta(f"{name}2")
 | |
|     assert meta2.default_score_weights == weights2
 | |
|     nlp = Language()
 | |
|     nlp._config["training"]["score_weights"] = {}
 | |
|     nlp.add_pipe(f"{name}1")
 | |
|     nlp.add_pipe(f"{name}2")
 | |
|     cfg = nlp.config["training"]
 | |
|     expected_weights = {"a1": 0.25, "a2": 0.25, "b1": 0.1, "b2": 0.35, "b3": 0.05}
 | |
|     assert cfg["score_weights"] == expected_weights
 |