mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			144 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			144 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import hypothesis
 | 
						|
import hypothesis.strategies
 | 
						|
import numpy
 | 
						|
import pytest
 | 
						|
from thinc.tests.strategies import ndarrays_of_shape
 | 
						|
 | 
						|
from spacy.language import Language
 | 
						|
from spacy.pipeline._parser_internals._beam_utils import BeamBatch
 | 
						|
from spacy.pipeline._parser_internals.arc_eager import ArcEager
 | 
						|
from spacy.pipeline._parser_internals.stateclass import StateClass
 | 
						|
from spacy.tokens import Doc
 | 
						|
from spacy.training import Example
 | 
						|
from spacy.vocab import Vocab
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture(scope="module")
 | 
						|
def vocab():
 | 
						|
    return Vocab()
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture(scope="module")
 | 
						|
def moves(vocab):
 | 
						|
    aeager = ArcEager(vocab.strings, {})
 | 
						|
    aeager.add_action(0, "")
 | 
						|
    aeager.add_action(1, "")
 | 
						|
    aeager.add_action(2, "nsubj")
 | 
						|
    aeager.add_action(2, "punct")
 | 
						|
    aeager.add_action(2, "aux")
 | 
						|
    aeager.add_action(2, "nsubjpass")
 | 
						|
    aeager.add_action(3, "dobj")
 | 
						|
    aeager.add_action(2, "aux")
 | 
						|
    aeager.add_action(4, "ROOT")
 | 
						|
    return aeager
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture(scope="module")
 | 
						|
def docs(vocab):
 | 
						|
    return [
 | 
						|
        Doc(
 | 
						|
            vocab,
 | 
						|
            words=["Rats", "bite", "things"],
 | 
						|
            heads=[1, 1, 1],
 | 
						|
            deps=["nsubj", "ROOT", "dobj"],
 | 
						|
            sent_starts=[True, False, False],
 | 
						|
        )
 | 
						|
    ]
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture(scope="module")
 | 
						|
def examples(docs):
 | 
						|
    return [Example(doc, doc.copy()) for doc in docs]
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def states(docs):
 | 
						|
    return [StateClass(doc) for doc in docs]
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def tokvecs(docs, vector_size):
 | 
						|
    output = []
 | 
						|
    for doc in docs:
 | 
						|
        vec = numpy.random.uniform(-0.1, 0.1, (len(doc), vector_size))
 | 
						|
        output.append(numpy.asarray(vec))
 | 
						|
    return output
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture(scope="module")
 | 
						|
def batch_size(docs):
 | 
						|
    return len(docs)
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture(scope="module")
 | 
						|
def beam_width():
 | 
						|
    return 4
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture(params=[0.0, 0.5, 1.0])
 | 
						|
def beam_density(request):
 | 
						|
    return request.param
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def vector_size():
 | 
						|
    return 6
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def beam(moves, examples, beam_width):
 | 
						|
    states, golds, _ = moves.init_gold_batch(examples)
 | 
						|
    return BeamBatch(moves, states, golds, width=beam_width, density=0.0)
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def scores(moves, batch_size, beam_width):
 | 
						|
    return numpy.asarray(
 | 
						|
        numpy.concatenate(
 | 
						|
            [
 | 
						|
                numpy.random.uniform(-0.1, 0.1, (beam_width, moves.n_moves))
 | 
						|
                for _ in range(batch_size)
 | 
						|
            ]
 | 
						|
        ),
 | 
						|
        dtype="float32",
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def test_create_beam(beam):
 | 
						|
    pass
 | 
						|
 | 
						|
 | 
						|
def test_beam_advance(beam, scores):
 | 
						|
    beam.advance(scores)
 | 
						|
 | 
						|
 | 
						|
def test_beam_advance_too_few_scores(beam, scores):
 | 
						|
    n_state = sum(len(beam) for beam in beam)
 | 
						|
    scores = scores[:n_state]
 | 
						|
    with pytest.raises(IndexError):
 | 
						|
        beam.advance(scores[:-1])
 | 
						|
 | 
						|
 | 
						|
def test_beam_parse(examples, beam_width):
 | 
						|
    nlp = Language()
 | 
						|
    parser = nlp.add_pipe("beam_parser")
 | 
						|
    parser.cfg["beam_width"] = beam_width
 | 
						|
    parser.add_label("nsubj")
 | 
						|
    parser.initialize(lambda: examples)
 | 
						|
    doc = nlp.make_doc("Australia is a country")
 | 
						|
    parser(doc)
 | 
						|
 | 
						|
 | 
						|
@hypothesis.given(hyp=hypothesis.strategies.data())
 | 
						|
def test_beam_density(moves, examples, beam_width, hyp):
 | 
						|
    beam_density = float(hyp.draw(hypothesis.strategies.floats(0.0, 1.0, width=32)))
 | 
						|
    states, golds, _ = moves.init_gold_batch(examples)
 | 
						|
    beam = BeamBatch(moves, states, golds, width=beam_width, density=beam_density)
 | 
						|
    n_state = sum(len(beam) for beam in beam)
 | 
						|
    scores = hyp.draw(ndarrays_of_shape((n_state, moves.n_moves)))
 | 
						|
    beam.advance(scores)
 | 
						|
    for b in beam:
 | 
						|
        beam_probs = b.probs
 | 
						|
        assert b.min_density == beam_density
 | 
						|
        assert beam_probs[-1] >= beam_probs[0] * beam_density
 |