spaCy/spacy/tokens/printers.py
2017-05-13 12:32:06 +02:00

67 lines
3.0 KiB
Python

from copy import deepcopy
# coding: utf8
from __future__ import unicode_literals
def merge_ents(doc):
"""
Helper: merge adjacent entities into single tokens; modifies the doc.
"""
for ent in doc.ents:
ent.merge(ent.root.tag_, ent.text, ent.label_)
return doc
def format_POS(token, light, flat):
"""
Helper: form the POS output for a token.
"""
subtree = dict([
("word", token.text),
("lemma", token.lemma_), # trigger
("NE", token.ent_type_), # trigger
("POS_fine", token.tag_),
("POS_coarse", token.pos_),
("arc", token.dep_),
("modifiers", [])
])
if light:
subtree.pop("lemma")
subtree.pop("NE")
if flat:
subtree.pop("arc")
subtree.pop("modifiers")
return subtree
def POS_tree(root, light, flat):
"""
Helper: generate a POS tree for a root token. The doc must have
merge_ents(doc) ran on it.
"""
subtree = format_POS(root, light=light, flat=flat)
for c in root.children:
subtree["modifiers"].append(POS_tree(c))
return subtree
def parse_tree(doc, light=False, flat=False):
"""
Makes a copy of the doc, then construct a syntactic parse tree, similar to
the one used in displaCy. Generates the POS tree for all sentences in a doc.
Args:
doc: The doc for parsing.
Returns:
[parse_trees (Dict)]:
>>> from spacy.en import English
>>> nlp = English()
>>> doc = nlp('Bob brought Alice the pizza. Alice ate the pizza.')
>>> trees = doc.print_tree()
[{'modifiers': [{'modifiers': [], 'NE': 'PERSON', 'word': 'Bob', 'arc': 'nsubj', 'POS_coarse': 'PROPN', 'POS_fine': 'NNP', 'lemma': 'Bob'}, {'modifiers': [], 'NE': 'PERSON', 'word': 'Alice', 'arc': 'dobj', 'POS_coarse': 'PROPN', 'POS_fine': 'NNP', 'lemma': 'Alice'}, {'modifiers': [{'modifiers': [], 'NE': '', 'word': 'the', 'arc': 'det', 'POS_coarse': 'DET', 'POS_fine': 'DT', 'lemma': 'the'}], 'NE': '', 'word': 'pizza', 'arc': 'dobj', 'POS_coarse': 'NOUN', 'POS_fine': 'NN', 'lemma': 'pizza'}, {'modifiers': [], 'NE': '', 'word': '.', 'arc': 'punct', 'POS_coarse': 'PUNCT', 'POS_fine': '.', 'lemma': '.'}], 'NE': '', 'word': 'brought', 'arc': 'ROOT', 'POS_coarse': 'VERB', 'POS_fine': 'VBD', 'lemma': 'bring'}, {'modifiers': [{'modifiers': [], 'NE': 'PERSON', 'word': 'Alice', 'arc': 'nsubj', 'POS_coarse': 'PROPN', 'POS_fine': 'NNP', 'lemma': 'Alice'}, {'modifiers': [{'modifiers': [], 'NE': '', 'word': 'the', 'arc': 'det', 'POS_coarse': 'DET', 'POS_fine': 'DT', 'lemma': 'the'}], 'NE': '', 'word': 'pizza', 'arc': 'dobj', 'POS_coarse': 'NOUN', 'POS_fine': 'NN', 'lemma': 'pizza'}, {'modifiers': [], 'NE': '', 'word': '.', 'arc': 'punct', 'POS_coarse': 'PUNCT', 'POS_fine': '.', 'lemma': '.'}], 'NE': '', 'word': 'ate', 'arc': 'ROOT', 'POS_coarse': 'VERB', 'POS_fine': 'VBD', 'lemma': 'eat'}]
"""
doc_clone = deepcopy(doc)
merge_ents(doc_clone) # merge the entities into single tokens first
return [POS_tree(sent.root, light=light, flat=flat) for sent in doc_clone.sents]