mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-22 15:24:11 +03:00
d844030fd8
* Update imports for `bin/` * Add all currently supported languages * Update subtok merger for new Matcher validation * Modify blinded check to look at tokens instead of lemmas (for corpora with tokens but not lemmas like Telugu)
294 lines
13 KiB
Python
294 lines
13 KiB
Python
import spacy
|
|
import time
|
|
import re
|
|
import plac
|
|
import operator
|
|
import datetime
|
|
from pathlib import Path
|
|
import xml.etree.ElementTree as ET
|
|
|
|
import conll17_ud_eval
|
|
from ud_train import write_conllu
|
|
from spacy.lang.lex_attrs import word_shape
|
|
from spacy.util import get_lang_class
|
|
|
|
# All languages in spaCy - in UD format (note that Norwegian is 'no' instead of 'nb')
|
|
ALL_LANGUAGES = ("af, ar, bg, bn, ca, cs, da, de, el, en, es, et, fa, fi, fr,"
|
|
"ga, he, hi, hr, hu, id, is, it, ja, kn, ko, lt, lv, mr, no,"
|
|
"nl, pl, pt, ro, ru, si, sk, sl, sq, sr, sv, ta, te, th, tl,"
|
|
"tr, tt, uk, ur, vi, zh")
|
|
|
|
# Non-parsing tasks that will be evaluated (works for default models)
|
|
EVAL_NO_PARSE = ['Tokens', 'Words', 'Lemmas', 'Sentences', 'Feats']
|
|
|
|
# Tasks that will be evaluated if check_parse=True (does not work for default models)
|
|
EVAL_PARSE = ['Tokens', 'Words', 'Lemmas', 'Sentences', 'Feats', 'UPOS', 'XPOS', 'AllTags', 'UAS', 'LAS']
|
|
|
|
# Minimum frequency an error should have to be printed
|
|
PRINT_FREQ = 20
|
|
|
|
# Maximum number of errors printed per category
|
|
PRINT_TOTAL = 10
|
|
|
|
space_re = re.compile("\s+")
|
|
|
|
|
|
def load_model(modelname, add_sentencizer=False):
|
|
""" Load a specific spaCy model """
|
|
loading_start = time.time()
|
|
nlp = spacy.load(modelname)
|
|
if add_sentencizer:
|
|
nlp.add_pipe(nlp.create_pipe('sentencizer'))
|
|
loading_end = time.time()
|
|
loading_time = loading_end - loading_start
|
|
if add_sentencizer:
|
|
return nlp, loading_time, modelname + '_sentencizer'
|
|
return nlp, loading_time, modelname
|
|
|
|
|
|
def load_default_model_sentencizer(lang):
|
|
""" Load a generic spaCy model and add the sentencizer for sentence tokenization"""
|
|
loading_start = time.time()
|
|
lang_class = get_lang_class(lang)
|
|
nlp = lang_class()
|
|
nlp.add_pipe(nlp.create_pipe('sentencizer'))
|
|
loading_end = time.time()
|
|
loading_time = loading_end - loading_start
|
|
return nlp, loading_time, lang + "_default_" + 'sentencizer'
|
|
|
|
|
|
def split_text(text):
|
|
return [space_re.sub(" ", par.strip()) for par in text.split("\n\n")]
|
|
|
|
|
|
def get_freq_tuples(my_list, print_total_threshold):
|
|
""" Turn a list of errors into frequency-sorted tuples thresholded by a certain total number """
|
|
d = {}
|
|
for token in my_list:
|
|
d.setdefault(token, 0)
|
|
d[token] += 1
|
|
return sorted(d.items(), key=operator.itemgetter(1), reverse=True)[:print_total_threshold]
|
|
|
|
|
|
def _contains_blinded_text(stats_xml):
|
|
""" Heuristic to determine whether the treebank has blinded texts or not """
|
|
tree = ET.parse(stats_xml)
|
|
root = tree.getroot()
|
|
total_tokens = int(root.find('size/total/tokens').text)
|
|
unique_forms = int(root.find('forms').get('unique'))
|
|
|
|
# assume the corpus is largely blinded when there are less than 1% unique tokens
|
|
return (unique_forms / total_tokens) < 0.01
|
|
|
|
|
|
def fetch_all_treebanks(ud_dir, languages, corpus, best_per_language):
|
|
"""" Fetch the txt files for all treebanks for a given set of languages """
|
|
all_treebanks = dict()
|
|
treebank_size = dict()
|
|
for l in languages:
|
|
all_treebanks[l] = []
|
|
treebank_size[l] = 0
|
|
|
|
for treebank_dir in ud_dir.iterdir():
|
|
if treebank_dir.is_dir():
|
|
for txt_path in treebank_dir.iterdir():
|
|
if txt_path.name.endswith('-ud-' + corpus + '.txt'):
|
|
file_lang = txt_path.name.split('_')[0]
|
|
if file_lang in languages:
|
|
gold_path = treebank_dir / txt_path.name.replace('.txt', '.conllu')
|
|
stats_xml = treebank_dir / "stats.xml"
|
|
# ignore treebanks where the texts are not publicly available
|
|
if not _contains_blinded_text(stats_xml):
|
|
if not best_per_language:
|
|
all_treebanks[file_lang].append(txt_path)
|
|
# check the tokens in the gold annotation to keep only the biggest treebank per language
|
|
else:
|
|
with gold_path.open(mode='r', encoding='utf-8') as gold_file:
|
|
gold_ud = conll17_ud_eval.load_conllu(gold_file)
|
|
gold_tokens = len(gold_ud.tokens)
|
|
if treebank_size[file_lang] < gold_tokens:
|
|
all_treebanks[file_lang] = [txt_path]
|
|
treebank_size[file_lang] = gold_tokens
|
|
|
|
return all_treebanks
|
|
|
|
|
|
def run_single_eval(nlp, loading_time, print_name, text_path, gold_ud, tmp_output_path, out_file, print_header,
|
|
check_parse, print_freq_tasks):
|
|
"""" Run an evaluation of a model nlp on a certain specified treebank """
|
|
with text_path.open(mode='r', encoding='utf-8') as f:
|
|
flat_text = f.read()
|
|
|
|
# STEP 1: tokenize text
|
|
tokenization_start = time.time()
|
|
texts = split_text(flat_text)
|
|
docs = list(nlp.pipe(texts))
|
|
tokenization_end = time.time()
|
|
tokenization_time = tokenization_end - tokenization_start
|
|
|
|
# STEP 2: record stats and timings
|
|
tokens_per_s = int(len(gold_ud.tokens) / tokenization_time)
|
|
|
|
print_header_1 = ['date', 'text_path', 'gold_tokens', 'model', 'loading_time', 'tokenization_time', 'tokens_per_s']
|
|
print_string_1 = [str(datetime.date.today()), text_path.name, len(gold_ud.tokens),
|
|
print_name, "%.2f" % loading_time, "%.2f" % tokenization_time, tokens_per_s]
|
|
|
|
# STEP 3: evaluate predicted tokens and features
|
|
with tmp_output_path.open(mode="w", encoding="utf8") as tmp_out_file:
|
|
write_conllu(docs, tmp_out_file)
|
|
with tmp_output_path.open(mode="r", encoding="utf8") as sys_file:
|
|
sys_ud = conll17_ud_eval.load_conllu(sys_file, check_parse=check_parse)
|
|
tmp_output_path.unlink()
|
|
scores = conll17_ud_eval.evaluate(gold_ud, sys_ud, check_parse=check_parse)
|
|
|
|
# STEP 4: format the scoring results
|
|
eval_headers = EVAL_PARSE
|
|
if not check_parse:
|
|
eval_headers = EVAL_NO_PARSE
|
|
|
|
for score_name in eval_headers:
|
|
score = scores[score_name]
|
|
print_string_1.extend(["%.2f" % score.precision,
|
|
"%.2f" % score.recall,
|
|
"%.2f" % score.f1])
|
|
print_string_1.append("-" if score.aligned_accuracy is None else "%.2f" % score.aligned_accuracy)
|
|
print_string_1.append("-" if score.undersegmented is None else "%.4f" % score.under_perc)
|
|
print_string_1.append("-" if score.oversegmented is None else "%.4f" % score.over_perc)
|
|
|
|
print_header_1.extend([score_name + '_p', score_name + '_r', score_name + '_F', score_name + '_acc',
|
|
score_name + '_under', score_name + '_over'])
|
|
|
|
if score_name in print_freq_tasks:
|
|
print_header_1.extend([score_name + '_word_under_ex', score_name + '_shape_under_ex',
|
|
score_name + '_word_over_ex', score_name + '_shape_over_ex'])
|
|
|
|
d_under_words = get_freq_tuples(score.undersegmented, PRINT_TOTAL)
|
|
d_under_shapes = get_freq_tuples([word_shape(x) for x in score.undersegmented], PRINT_TOTAL)
|
|
d_over_words = get_freq_tuples(score.oversegmented, PRINT_TOTAL)
|
|
d_over_shapes = get_freq_tuples([word_shape(x) for x in score.oversegmented], PRINT_TOTAL)
|
|
|
|
# saving to CSV with ; seperator so blinding ; in the example output
|
|
print_string_1.append(
|
|
str({k: v for k, v in d_under_words if v > PRINT_FREQ}).replace(";", "*SEMICOLON*"))
|
|
print_string_1.append(
|
|
str({k: v for k, v in d_under_shapes if v > PRINT_FREQ}).replace(";", "*SEMICOLON*"))
|
|
print_string_1.append(
|
|
str({k: v for k, v in d_over_words if v > PRINT_FREQ}).replace(";", "*SEMICOLON*"))
|
|
print_string_1.append(
|
|
str({k: v for k, v in d_over_shapes if v > PRINT_FREQ}).replace(";", "*SEMICOLON*"))
|
|
|
|
# STEP 5: print the formatted results to CSV
|
|
if print_header:
|
|
out_file.write(';'.join(map(str, print_header_1)) + '\n')
|
|
out_file.write(';'.join(map(str, print_string_1)) + '\n')
|
|
|
|
|
|
def run_all_evals(models, treebanks, out_file, check_parse, print_freq_tasks):
|
|
"""" Run an evaluation for each language with its specified models and treebanks """
|
|
print_header = True
|
|
|
|
for tb_lang, treebank_list in treebanks.items():
|
|
print()
|
|
print("Language", tb_lang)
|
|
for text_path in treebank_list:
|
|
print(" Evaluating on", text_path)
|
|
|
|
gold_path = text_path.parent / (text_path.stem + '.conllu')
|
|
print(" Gold data from ", gold_path)
|
|
|
|
# nested try blocks to ensure the code can continue with the next iteration after a failure
|
|
try:
|
|
with gold_path.open(mode='r', encoding='utf-8') as gold_file:
|
|
gold_ud = conll17_ud_eval.load_conllu(gold_file)
|
|
|
|
for nlp, nlp_loading_time, nlp_name in models[tb_lang]:
|
|
try:
|
|
print(" Benchmarking", nlp_name)
|
|
tmp_output_path = text_path.parent / str('tmp_' + nlp_name + '.conllu')
|
|
run_single_eval(nlp, nlp_loading_time, nlp_name, text_path, gold_ud, tmp_output_path, out_file,
|
|
print_header, check_parse, print_freq_tasks)
|
|
print_header = False
|
|
except Exception as e:
|
|
print(" Ran into trouble: ", str(e))
|
|
except Exception as e:
|
|
print(" Ran into trouble: ", str(e))
|
|
|
|
|
|
@plac.annotations(
|
|
out_path=("Path to output CSV file", "positional", None, Path),
|
|
ud_dir=("Path to Universal Dependencies corpus", "positional", None, Path),
|
|
check_parse=("Set flag to evaluate parsing performance", "flag", "p", bool),
|
|
langs=("Enumeration of languages to evaluate (default: all)", "option", "l", str),
|
|
exclude_trained_models=("Set flag to exclude trained models", "flag", "t", bool),
|
|
exclude_multi=("Set flag to exclude the multi-language model as default baseline", "flag", "m", bool),
|
|
hide_freq=("Set flag to avoid printing out more detailed high-freq tokenization errors", "flag", "f", bool),
|
|
corpus=("Whether to run on train, dev or test", "option", "c", str),
|
|
best_per_language=("Set flag to only keep the largest treebank for each language", "flag", "b", bool)
|
|
)
|
|
def main(out_path, ud_dir, check_parse=False, langs=ALL_LANGUAGES, exclude_trained_models=False, exclude_multi=False,
|
|
hide_freq=False, corpus='train', best_per_language=False):
|
|
""""
|
|
Assemble all treebanks and models to run evaluations with.
|
|
When setting check_parse to True, the default models will not be evaluated as they don't have parsing functionality
|
|
"""
|
|
languages = [lang.strip() for lang in langs.split(",")]
|
|
|
|
print_freq_tasks = []
|
|
if not hide_freq:
|
|
print_freq_tasks = ['Tokens']
|
|
|
|
# fetching all relevant treebank from the directory
|
|
treebanks = fetch_all_treebanks(ud_dir, languages, corpus, best_per_language)
|
|
|
|
print()
|
|
print("Loading all relevant models for", languages)
|
|
models = dict()
|
|
|
|
# multi-lang model
|
|
multi = None
|
|
if not exclude_multi and not check_parse:
|
|
multi = load_model('xx_ent_wiki_sm', add_sentencizer=True)
|
|
|
|
# initialize all models with the multi-lang model
|
|
for lang in languages:
|
|
models[lang] = [multi] if multi else []
|
|
# add default models if we don't want to evaluate parsing info
|
|
if not check_parse:
|
|
# Norwegian is 'nb' in spaCy but 'no' in the UD corpora
|
|
if lang == 'no':
|
|
models['no'].append(load_default_model_sentencizer('nb'))
|
|
else:
|
|
models[lang].append(load_default_model_sentencizer(lang))
|
|
|
|
# language-specific trained models
|
|
if not exclude_trained_models:
|
|
if 'de' in models:
|
|
models['de'].append(load_model('de_core_news_sm'))
|
|
models['de'].append(load_model('de_core_news_md'))
|
|
if 'el' in models:
|
|
models['el'].append(load_model('el_core_news_sm'))
|
|
models['el'].append(load_model('el_core_news_md'))
|
|
if 'en' in models:
|
|
models['en'].append(load_model('en_core_web_sm'))
|
|
models['en'].append(load_model('en_core_web_md'))
|
|
models['en'].append(load_model('en_core_web_lg'))
|
|
if 'es' in models:
|
|
models['es'].append(load_model('es_core_news_sm'))
|
|
models['es'].append(load_model('es_core_news_md'))
|
|
if 'fr' in models:
|
|
models['fr'].append(load_model('fr_core_news_sm'))
|
|
models['fr'].append(load_model('fr_core_news_md'))
|
|
if 'it' in models:
|
|
models['it'].append(load_model('it_core_news_sm'))
|
|
if 'nl' in models:
|
|
models['nl'].append(load_model('nl_core_news_sm'))
|
|
if 'pt' in models:
|
|
models['pt'].append(load_model('pt_core_news_sm'))
|
|
|
|
with out_path.open(mode='w', encoding='utf-8') as out_file:
|
|
run_all_evals(models, treebanks, out_file, check_parse, print_freq_tasks)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
plac.call(main)
|