mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-29 11:26:28 +03:00
121 lines
4.2 KiB
Cython
121 lines
4.2 KiB
Cython
# coding: utf-8
|
|
from __future__ import unicode_literals
|
|
|
|
from ..parts_of_speech cimport NOUN, PROPN, PRON, VERB, AUX
|
|
|
|
|
|
def english_noun_chunks(obj):
|
|
"""
|
|
Detect base noun phrases from a dependency parse.
|
|
Works on both Doc and Span.
|
|
"""
|
|
labels = ['nsubj', 'dobj', 'nsubjpass', 'pcomp', 'pobj',
|
|
'attr', 'ROOT']
|
|
doc = obj.doc # Ensure works on both Doc and Span.
|
|
np_deps = [doc.vocab.strings[label] for label in labels]
|
|
conj = doc.vocab.strings['conj']
|
|
np_label = doc.vocab.strings['NP']
|
|
seen = set()
|
|
for i, word in enumerate(obj):
|
|
if word.pos not in (NOUN, PROPN, PRON):
|
|
continue
|
|
# Prevent nested chunks from being produced
|
|
if word.i in seen:
|
|
continue
|
|
if word.dep in np_deps:
|
|
if any(w.i in seen for w in word.subtree):
|
|
continue
|
|
seen.update(j for j in range(word.left_edge.i, word.i+1))
|
|
yield word.left_edge.i, word.i+1, np_label
|
|
elif word.dep == conj:
|
|
head = word.head
|
|
while head.dep == conj and head.head.i < head.i:
|
|
head = head.head
|
|
# If the head is an NP, and we're coordinated to it, we're an NP
|
|
if head.dep in np_deps:
|
|
if any(w.i in seen for w in word.subtree):
|
|
continue
|
|
seen.update(j for j in range(word.left_edge.i, word.i+1))
|
|
yield word.left_edge.i, word.i+1, np_label
|
|
|
|
|
|
# this iterator extracts spans headed by NOUNs starting from the left-most
|
|
# syntactic dependent until the NOUN itself
|
|
# for close apposition and measurement construction, the span is sometimes
|
|
# extended to the right of the NOUN
|
|
# example: "eine Tasse Tee" (a cup (of) tea) returns "eine Tasse Tee" and not
|
|
# just "eine Tasse", same for "das Thema Familie"
|
|
def german_noun_chunks(obj):
|
|
labels = ['sb', 'oa', 'da', 'nk', 'mo', 'ag', 'ROOT', 'root', 'cj', 'pd', 'og', 'app']
|
|
doc = obj.doc # Ensure works on both Doc and Span.
|
|
np_label = doc.vocab.strings['NP']
|
|
np_deps = set(doc.vocab.strings[label] for label in labels)
|
|
close_app = doc.vocab.strings['nk']
|
|
|
|
rbracket = 0
|
|
for i, word in enumerate(obj):
|
|
if i < rbracket:
|
|
continue
|
|
if word.pos in (NOUN, PROPN, PRON) and word.dep in np_deps:
|
|
rbracket = word.i+1
|
|
# try to extend the span to the right
|
|
# to capture close apposition/measurement constructions
|
|
for rdep in doc[word.i].rights:
|
|
if rdep.pos in (NOUN, PROPN) and rdep.dep == close_app:
|
|
rbracket = rdep.i+1
|
|
yield word.left_edge.i, rbracket, np_label
|
|
|
|
|
|
def es_noun_chunks(obj):
|
|
|
|
doc = obj.doc
|
|
np_label = doc.vocab.strings['NP']
|
|
|
|
left_labels = ['det', 'fixed', 'neg'] #['nunmod', 'det', 'appos', 'fixed']
|
|
right_labels = ['flat', 'fixed', 'compound', 'neg']
|
|
stop_labels = ['punct']
|
|
|
|
np_left_deps = [doc.vocab.strings[label] for label in left_labels]
|
|
np_right_deps = [doc.vocab.strings[label] for label in right_labels]
|
|
stop_deps = [doc.vocab.strings[label] for label in stop_labels]
|
|
|
|
def next_token(token):
|
|
try:
|
|
return token.nbor()
|
|
except:
|
|
return None
|
|
|
|
def noun_bounds(root):
|
|
|
|
def is_verb_token(token):
|
|
return token.pos in [VERB, AUX]
|
|
|
|
left_bound = root
|
|
for token in reversed(list(root.lefts)):
|
|
if token.dep in np_left_deps:
|
|
left_bound = token
|
|
|
|
right_bound = root
|
|
for token in root.rights:
|
|
if (token.dep in np_right_deps):
|
|
left, right = noun_bounds(token)
|
|
|
|
if list(filter(lambda t: is_verb_token(t) or t.dep in stop_deps, doc[left_bound.i: right.i])):
|
|
break
|
|
else:
|
|
right_bound = right
|
|
|
|
return left_bound, right_bound
|
|
|
|
|
|
token = doc[0]
|
|
while token and token.i < len(doc):
|
|
if token.pos in [PROPN, NOUN, PRON]:
|
|
left, right = noun_bounds(token)
|
|
yield left.i, right.i+1, np_label
|
|
token = right
|
|
token = next_token(token)
|
|
|
|
|
|
CHUNKERS = {'en': english_noun_chunks, 'de': german_noun_chunks, 'es': es_noun_chunks}
|