mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			959 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
			
		
		
	
	
			959 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
# cython: infer_types=True
 | 
						|
# cython: profile=True
 | 
						|
# cython: cdivision=True
 | 
						|
# cython: boundscheck=False
 | 
						|
# coding: utf-8
 | 
						|
from __future__ import unicode_literals, print_function
 | 
						|
 | 
						|
from collections import Counter, OrderedDict
 | 
						|
import ujson
 | 
						|
import json
 | 
						|
import contextlib
 | 
						|
import numpy
 | 
						|
 | 
						|
from libc.math cimport exp
 | 
						|
cimport cython
 | 
						|
cimport cython.parallel
 | 
						|
import cytoolz
 | 
						|
import dill
 | 
						|
 | 
						|
import numpy.random
 | 
						|
cimport numpy as np
 | 
						|
 | 
						|
from libcpp.vector cimport vector
 | 
						|
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
 | 
						|
from cpython.exc cimport PyErr_CheckSignals, PyErr_SetFromErrno
 | 
						|
from libc.stdint cimport uint32_t, uint64_t
 | 
						|
from libc.string cimport memset, memcpy
 | 
						|
from libc.stdlib cimport malloc, calloc, free
 | 
						|
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
 | 
						|
from thinc.linear.avgtron cimport AveragedPerceptron
 | 
						|
from thinc.linalg cimport Vec, VecVec
 | 
						|
from thinc.structs cimport SparseArrayC, FeatureC, ExampleC
 | 
						|
from thinc.extra.eg cimport Example
 | 
						|
from thinc.extra.search cimport Beam
 | 
						|
 | 
						|
from cymem.cymem cimport Pool, Address
 | 
						|
from murmurhash.mrmr cimport hash64
 | 
						|
from preshed.maps cimport MapStruct
 | 
						|
from preshed.maps cimport map_get
 | 
						|
 | 
						|
from thinc.api import layerize, chain, clone, with_flatten
 | 
						|
from thinc.v2v import Model, Maxout, Softmax, Affine, ReLu, SELU
 | 
						|
from thinc.misc import LayerNorm
 | 
						|
 | 
						|
from thinc.neural.ops import NumpyOps, CupyOps
 | 
						|
from thinc.neural.util import get_array_module
 | 
						|
 | 
						|
from .. import util
 | 
						|
from ..util import get_async, get_cuda_stream
 | 
						|
from .._ml import zero_init, PrecomputableAffine, PrecomputableMaxouts
 | 
						|
from .._ml import Tok2Vec, doc2feats, rebatch
 | 
						|
from .._ml import Residual, drop_layer, flatten
 | 
						|
from .._ml import link_vectors_to_models
 | 
						|
from .._ml import HistoryFeatures
 | 
						|
from ..compat import json_dumps, copy_array
 | 
						|
 | 
						|
from .stateclass cimport StateClass
 | 
						|
from ._state cimport StateC
 | 
						|
from . import nonproj
 | 
						|
from .transition_system import OracleError
 | 
						|
from .transition_system cimport TransitionSystem, Transition
 | 
						|
from ..structs cimport TokenC
 | 
						|
from ..tokens.doc cimport Doc
 | 
						|
from ..strings cimport StringStore
 | 
						|
from ..gold cimport GoldParse
 | 
						|
from ..attrs cimport ID, TAG, DEP, ORTH, NORM, PREFIX, SUFFIX, TAG
 | 
						|
from . import _beam_utils
 | 
						|
 | 
						|
 | 
						|
def get_templates(*args, **kwargs):
 | 
						|
    return []
 | 
						|
 | 
						|
DEBUG = False
 | 
						|
def set_debug(val):
 | 
						|
    global DEBUG
 | 
						|
    DEBUG = val
 | 
						|
 | 
						|
 | 
						|
cdef class precompute_hiddens:
 | 
						|
    '''Allow a model to be "primed" by pre-computing input features in bulk.
 | 
						|
 | 
						|
    This is used for the parser, where we want to take a batch of documents,
 | 
						|
    and compute vectors for each (token, position) pair. These vectors can then
 | 
						|
    be reused, especially for beam-search.
 | 
						|
 | 
						|
    Let's say we're using 12 features for each state, e.g. word at start of
 | 
						|
    buffer, three words on stack, their children, etc. In the normal arc-eager
 | 
						|
    system, a document of length N is processed in 2*N states. This means we'll
 | 
						|
    create 2*N*12 feature vectors --- but if we pre-compute, we only need
 | 
						|
    N*12 vector computations. The saving for beam-search is much better:
 | 
						|
    if we have a beam of k, we'll normally make 2*N*12*K computations --
 | 
						|
    so we can save the factor k. This also gives a nice CPU/GPU division:
 | 
						|
    we can do all our hard maths up front, packed into large multiplications,
 | 
						|
    and do the hard-to-program parsing on the CPU.
 | 
						|
    '''
 | 
						|
    cdef int nF, nO, nP
 | 
						|
    cdef bint _is_synchronized
 | 
						|
    cdef public object ops
 | 
						|
    cdef np.ndarray _features
 | 
						|
    cdef np.ndarray _cached
 | 
						|
    cdef object _cuda_stream
 | 
						|
    cdef object _bp_hiddens
 | 
						|
 | 
						|
    def __init__(self, batch_size, tokvecs, lower_model, cuda_stream=None, drop=0.):
 | 
						|
        gpu_cached, bp_features = lower_model.begin_update(tokvecs, drop=drop)
 | 
						|
        cdef np.ndarray cached
 | 
						|
        if not isinstance(gpu_cached, numpy.ndarray):
 | 
						|
            # Note the passing of cuda_stream here: it lets
 | 
						|
            # cupy make the copy asynchronously.
 | 
						|
            # We then have to block before first use.
 | 
						|
            cached = gpu_cached.get(stream=cuda_stream)
 | 
						|
        else:
 | 
						|
            cached = gpu_cached
 | 
						|
        self.nF = cached.shape[1]
 | 
						|
        self.nO = cached.shape[2]
 | 
						|
        self.nP = getattr(lower_model, 'nP', 1)
 | 
						|
        self.ops = lower_model.ops
 | 
						|
        self._is_synchronized = False
 | 
						|
        self._cuda_stream = cuda_stream
 | 
						|
        self._cached = cached
 | 
						|
        self._bp_hiddens = bp_features
 | 
						|
 | 
						|
    cdef const float* get_feat_weights(self) except NULL:
 | 
						|
        if not self._is_synchronized \
 | 
						|
        and self._cuda_stream is not None:
 | 
						|
            self._cuda_stream.synchronize()
 | 
						|
            self._is_synchronized = True
 | 
						|
        return <float*>self._cached.data
 | 
						|
 | 
						|
    def __call__(self, X):
 | 
						|
        return self.begin_update(X)[0]
 | 
						|
 | 
						|
    def begin_update(self, token_ids, drop=0.):
 | 
						|
        cdef np.ndarray state_vector = numpy.zeros((token_ids.shape[0], self.nO*self.nP), dtype='f')
 | 
						|
        # This is tricky, but (assuming GPU available);
 | 
						|
        # - Input to forward on CPU
 | 
						|
        # - Output from forward on CPU
 | 
						|
        # - Input to backward on GPU!
 | 
						|
        # - Output from backward on GPU
 | 
						|
        bp_hiddens = self._bp_hiddens
 | 
						|
 | 
						|
        feat_weights = self.get_feat_weights()
 | 
						|
        cdef int[:, ::1] ids = token_ids
 | 
						|
        sum_state_features(<float*>state_vector.data,
 | 
						|
            feat_weights, &ids[0,0],
 | 
						|
            token_ids.shape[0], self.nF, self.nO*self.nP)
 | 
						|
        state_vector, bp_nonlinearity = self._nonlinearity(state_vector)
 | 
						|
 | 
						|
        def backward(d_state_vector, sgd=None):
 | 
						|
            if bp_nonlinearity is not None:
 | 
						|
                d_state_vector = bp_nonlinearity(d_state_vector, sgd)
 | 
						|
            # This will usually be on GPU
 | 
						|
            if isinstance(d_state_vector, numpy.ndarray):
 | 
						|
                d_state_vector = self.ops.xp.array(d_state_vector)
 | 
						|
            d_tokens = bp_hiddens((d_state_vector, token_ids), sgd)
 | 
						|
            return d_tokens
 | 
						|
        return state_vector, backward
 | 
						|
 | 
						|
    def _nonlinearity(self, state_vector):
 | 
						|
        if self.nP == 1:
 | 
						|
            return state_vector, None
 | 
						|
        state_vector = state_vector.reshape(
 | 
						|
            (state_vector.shape[0], state_vector.shape[1]//self.nP, self.nP))
 | 
						|
        best, which = self.ops.maxout(state_vector)
 | 
						|
        def backprop(d_best, sgd=None):
 | 
						|
            return self.ops.backprop_maxout(d_best, which, self.nP)
 | 
						|
        return best, backprop
 | 
						|
 | 
						|
 | 
						|
 | 
						|
cdef void sum_state_features(float* output,
 | 
						|
        const float* cached, const int* token_ids, int B, int F, int O) nogil:
 | 
						|
    cdef int idx, b, f, i
 | 
						|
    cdef const float* feature
 | 
						|
    for b in range(B):
 | 
						|
        for f in range(F):
 | 
						|
            if token_ids[f] < 0:
 | 
						|
                continue
 | 
						|
            idx = token_ids[f] * F * O + f*O
 | 
						|
            feature = &cached[idx]
 | 
						|
            for i in range(O):
 | 
						|
                output[i] += feature[i]
 | 
						|
        output += O
 | 
						|
        token_ids += F
 | 
						|
 | 
						|
 | 
						|
cdef void cpu_log_loss(float* d_scores,
 | 
						|
        const float* costs, const int* is_valid, const float* scores,
 | 
						|
        int O) nogil:
 | 
						|
    """Do multi-label log loss"""
 | 
						|
    cdef double max_, gmax, Z, gZ
 | 
						|
    best = arg_max_if_gold(scores, costs, is_valid, O)
 | 
						|
    guess = arg_max_if_valid(scores, is_valid, O)
 | 
						|
    Z = 1e-10
 | 
						|
    gZ = 1e-10
 | 
						|
    max_ = scores[guess]
 | 
						|
    gmax = scores[best]
 | 
						|
    for i in range(O):
 | 
						|
        if is_valid[i]:
 | 
						|
            Z += exp(scores[i] - max_)
 | 
						|
            if costs[i] <= costs[best]:
 | 
						|
                gZ += exp(scores[i] - gmax)
 | 
						|
    for i in range(O):
 | 
						|
        if not is_valid[i]:
 | 
						|
            d_scores[i] = 0.
 | 
						|
        elif costs[i] <= costs[best]:
 | 
						|
            d_scores[i] = (exp(scores[i]-max_) / Z) - (exp(scores[i]-gmax)/gZ)
 | 
						|
        else:
 | 
						|
            d_scores[i] = exp(scores[i]-max_) / Z
 | 
						|
 | 
						|
 | 
						|
cdef void cpu_regression_loss(float* d_scores,
 | 
						|
        const float* costs, const int* is_valid, const float* scores,
 | 
						|
        int O) nogil:
 | 
						|
    cdef float eps = 2.
 | 
						|
    best = arg_max_if_gold(scores, costs, is_valid, O)
 | 
						|
    for i in range(O):
 | 
						|
        if not is_valid[i]:
 | 
						|
            d_scores[i] = 0.
 | 
						|
        elif scores[i] < scores[best]:
 | 
						|
            d_scores[i] = 0.
 | 
						|
        else:
 | 
						|
            # I doubt this is correct?
 | 
						|
            # Looking for something like Huber loss
 | 
						|
            diff = scores[i] - -costs[i]
 | 
						|
            if diff > eps:
 | 
						|
                d_scores[i] = eps
 | 
						|
            elif diff < -eps:
 | 
						|
                d_scores[i] = -eps
 | 
						|
            else:
 | 
						|
                d_scores[i] = diff
 | 
						|
 | 
						|
 | 
						|
cdef class Parser:
 | 
						|
    """
 | 
						|
    Base class of the DependencyParser and EntityRecognizer.
 | 
						|
    """
 | 
						|
    @classmethod
 | 
						|
    def Model(cls, nr_class, **cfg):
 | 
						|
        depth = util.env_opt('parser_hidden_depth', cfg.get('hidden_depth', 1))
 | 
						|
        if depth != 1:
 | 
						|
            raise ValueError("Currently parser depth is hard-coded to 1.")
 | 
						|
        parser_maxout_pieces = util.env_opt('parser_maxout_pieces', cfg.get('maxout_pieces', 2))
 | 
						|
        if parser_maxout_pieces != 2:
 | 
						|
            raise ValueError("Currently parser_maxout_pieces is hard-coded to 2")
 | 
						|
        token_vector_width = util.env_opt('token_vector_width', cfg.get('token_vector_width', 128))
 | 
						|
        hidden_width = util.env_opt('hidden_width', cfg.get('hidden_width', 200))
 | 
						|
        embed_size = util.env_opt('embed_size', cfg.get('embed_size', 7000))
 | 
						|
        hist_size = util.env_opt('history_feats', cfg.get('hist_size', 0))
 | 
						|
        hist_width = util.env_opt('history_width', cfg.get('hist_width', 0))
 | 
						|
        if hist_size != 0:
 | 
						|
            raise ValueError("Currently history size is hard-coded to 0")
 | 
						|
        if hist_width != 0:
 | 
						|
            raise ValueError("Currently history width is hard-coded to 0")
 | 
						|
        tok2vec = Tok2Vec(token_vector_width, embed_size,
 | 
						|
                          pretrained_dims=cfg.get('pretrained_dims', 0))
 | 
						|
        tok2vec = chain(tok2vec, flatten)
 | 
						|
        lower = PrecomputableMaxouts(hidden_width if depth >= 1 else nr_class,
 | 
						|
                    nF=cls.nr_feature, nP=parser_maxout_pieces,
 | 
						|
                    nI=token_vector_width)
 | 
						|
 | 
						|
        with Model.use_device('cpu'):
 | 
						|
            upper = chain(
 | 
						|
                clone(LayerNorm(Maxout(hidden_width, hidden_width)), depth-1),
 | 
						|
                zero_init(Affine(nr_class, hidden_width, drop_factor=0.0))
 | 
						|
            )
 | 
						|
 | 
						|
        # TODO: This is an unfortunate hack atm!
 | 
						|
        # Used to set input dimensions in network.
 | 
						|
        lower.begin_training(lower.ops.allocate((500, token_vector_width)))
 | 
						|
        cfg = {
 | 
						|
            'nr_class': nr_class,
 | 
						|
            'hidden_depth': depth,
 | 
						|
            'token_vector_width': token_vector_width,
 | 
						|
            'hidden_width': hidden_width,
 | 
						|
            'maxout_pieces': parser_maxout_pieces,
 | 
						|
            'hist_size': hist_size,
 | 
						|
            'hist_width': hist_width
 | 
						|
        }
 | 
						|
        return (tok2vec, lower, upper), cfg
 | 
						|
 | 
						|
    def __init__(self, Vocab vocab, moves=True, model=True, **cfg):
 | 
						|
        """
 | 
						|
        Create a Parser.
 | 
						|
 | 
						|
        Arguments:
 | 
						|
            vocab (Vocab):
 | 
						|
                The vocabulary object. Must be shared with documents to be processed.
 | 
						|
                The value is set to the .vocab attribute.
 | 
						|
            moves (TransitionSystem):
 | 
						|
                Defines how the parse-state is created, updated and evaluated.
 | 
						|
                The value is set to the .moves attribute unless True (default),
 | 
						|
                in which case a new instance is created with Parser.Moves().
 | 
						|
            model (object):
 | 
						|
                Defines how the parse-state is created, updated and evaluated.
 | 
						|
                The value is set to the .model attribute unless True (default),
 | 
						|
                in which case a new instance is created with Parser.Model().
 | 
						|
            **cfg:
 | 
						|
                Arbitrary configuration parameters. Set to the .cfg attribute
 | 
						|
        """
 | 
						|
        self.vocab = vocab
 | 
						|
        if moves is True:
 | 
						|
            self.moves = self.TransitionSystem(self.vocab.strings, {})
 | 
						|
        else:
 | 
						|
            self.moves = moves
 | 
						|
        if 'beam_width' not in cfg:
 | 
						|
            cfg['beam_width'] = util.env_opt('beam_width', 1)
 | 
						|
        if 'beam_density' not in cfg:
 | 
						|
            cfg['beam_density'] = util.env_opt('beam_density', 0.0)
 | 
						|
        if 'pretrained_dims' not in cfg:
 | 
						|
            cfg['pretrained_dims'] = self.vocab.vectors.data.shape[1]
 | 
						|
        cfg.setdefault('cnn_maxout_pieces', 3)
 | 
						|
        self.cfg = cfg
 | 
						|
        if 'actions' in self.cfg:
 | 
						|
            for action, labels in self.cfg.get('actions', {}).items():
 | 
						|
                for label in labels:
 | 
						|
                    self.moves.add_action(action, label)
 | 
						|
        self.model = model
 | 
						|
        self._multitasks = []
 | 
						|
 | 
						|
    def __reduce__(self):
 | 
						|
        return (Parser, (self.vocab, self.moves, self.model), None, None)
 | 
						|
 | 
						|
    def __call__(self, Doc doc, beam_width=None, beam_density=None):
 | 
						|
        """
 | 
						|
        Apply the parser or entity recognizer, setting the annotations onto the Doc object.
 | 
						|
 | 
						|
        Arguments:
 | 
						|
            doc (Doc): The document to be processed.
 | 
						|
        Returns:
 | 
						|
            None
 | 
						|
        """
 | 
						|
        if beam_width is None:
 | 
						|
            beam_width = self.cfg.get('beam_width', 1)
 | 
						|
        if beam_density is None:
 | 
						|
            beam_density = self.cfg.get('beam_density', 0.0)
 | 
						|
        cdef Beam beam
 | 
						|
        if beam_width == 1:
 | 
						|
            states = self.parse_batch([doc])
 | 
						|
            self.set_annotations([doc], states)
 | 
						|
            return doc
 | 
						|
        else:
 | 
						|
            beam = self.beam_parse([doc],
 | 
						|
                        beam_width=beam_width, beam_density=beam_density)[0]
 | 
						|
            output = self.moves.get_beam_annot(beam)
 | 
						|
            state = <StateClass>beam.at(0)
 | 
						|
            self.set_annotations([doc], [state])
 | 
						|
            _cleanup(beam)
 | 
						|
            return output
 | 
						|
 | 
						|
    def pipe(self, docs, int batch_size=256, int n_threads=2,
 | 
						|
             beam_width=None, beam_density=None):
 | 
						|
        """
 | 
						|
        Process a stream of documents.
 | 
						|
 | 
						|
        Arguments:
 | 
						|
            stream: The sequence of documents to process.
 | 
						|
            batch_size (int):
 | 
						|
                The number of documents to accumulate into a working set.
 | 
						|
            n_threads (int):
 | 
						|
                The number of threads with which to work on the buffer in parallel.
 | 
						|
        Yields (Doc): Documents, in order.
 | 
						|
        """
 | 
						|
        if beam_width is None:
 | 
						|
            beam_width = self.cfg.get('beam_width', 1)
 | 
						|
        if beam_density is None:
 | 
						|
            beam_density = self.cfg.get('beam_density', 0.0)
 | 
						|
        cdef Doc doc
 | 
						|
        cdef Beam beam
 | 
						|
        for batch in cytoolz.partition_all(batch_size, docs):
 | 
						|
            batch = list(batch)
 | 
						|
            by_length = sorted(list(batch), key=lambda doc: len(doc))
 | 
						|
            for subbatch in cytoolz.partition_all(8, by_length):
 | 
						|
                subbatch = list(subbatch)
 | 
						|
                if beam_width == 1:
 | 
						|
                    parse_states = self.parse_batch(subbatch)
 | 
						|
                    beams = []
 | 
						|
                else:
 | 
						|
                    beams = self.beam_parse(subbatch,
 | 
						|
                                beam_width=beam_width, beam_density=beam_density)
 | 
						|
                    parse_states = []
 | 
						|
                    for beam in beams:
 | 
						|
                        parse_states.append(<StateClass>beam.at(0))
 | 
						|
                self.set_annotations(subbatch, parse_states)
 | 
						|
            yield from batch
 | 
						|
 | 
						|
    def parse_batch(self, docs):
 | 
						|
        cdef:
 | 
						|
            precompute_hiddens state2vec
 | 
						|
            StateClass stcls
 | 
						|
            Pool mem
 | 
						|
            const float* feat_weights
 | 
						|
            StateC* st
 | 
						|
            vector[StateC*] states
 | 
						|
            int guess, nr_class, nr_feat, nr_piece, nr_dim, nr_state, nr_step
 | 
						|
            int j
 | 
						|
        if isinstance(docs, Doc):
 | 
						|
            docs = [docs]
 | 
						|
 | 
						|
        cuda_stream = get_cuda_stream()
 | 
						|
        (tokvecs, bp_tokvecs), state2vec, vec2scores = self.get_batch_model(docs, cuda_stream,
 | 
						|
                                                                            0.0)
 | 
						|
        nr_state = len(docs)
 | 
						|
        nr_class = self.moves.n_moves
 | 
						|
        nr_dim = tokvecs.shape[1]
 | 
						|
        nr_feat = self.nr_feature
 | 
						|
        nr_piece = state2vec.nP
 | 
						|
 | 
						|
        state_objs = self.moves.init_batch(docs)
 | 
						|
        for stcls in state_objs:
 | 
						|
            if not stcls.c.is_final():
 | 
						|
                states.push_back(stcls.c)
 | 
						|
 | 
						|
        feat_weights = state2vec.get_feat_weights()
 | 
						|
        cdef int i
 | 
						|
        cdef np.ndarray hidden_weights = numpy.ascontiguousarray(vec2scores._layers[-1].W.T)
 | 
						|
        cdef np.ndarray hidden_bias = vec2scores._layers[-1].b
 | 
						|
 | 
						|
        hW = <float*>hidden_weights.data
 | 
						|
        hb = <float*>hidden_bias.data
 | 
						|
        cdef int nr_hidden = hidden_weights.shape[0]
 | 
						|
        cdef int nr_task = states.size()
 | 
						|
        with nogil:
 | 
						|
            for i in cython.parallel.prange(nr_task, num_threads=2,
 | 
						|
                                            schedule='guided'):
 | 
						|
                self._parseC(states[i],
 | 
						|
                    feat_weights, hW, hb,
 | 
						|
                    nr_class, nr_hidden, nr_feat, nr_piece)
 | 
						|
        PyErr_CheckSignals()
 | 
						|
        return state_objs
 | 
						|
 | 
						|
    cdef void _parseC(self, StateC* state,
 | 
						|
            const float* feat_weights, const float* hW, const float* hb,
 | 
						|
            int nr_class, int nr_hidden, int nr_feat, int nr_piece) nogil:
 | 
						|
        token_ids = <int*>calloc(nr_feat, sizeof(int))
 | 
						|
        is_valid = <int*>calloc(nr_class, sizeof(int))
 | 
						|
        vectors = <float*>calloc(nr_hidden * nr_piece, sizeof(float))
 | 
						|
        scores = <float*>calloc(nr_class, sizeof(float))
 | 
						|
        if not (token_ids and is_valid and vectors and scores):
 | 
						|
            with gil:
 | 
						|
                PyErr_SetFromErrno(MemoryError)
 | 
						|
                PyErr_CheckSignals()
 | 
						|
 | 
						|
        while not state.is_final():
 | 
						|
            state.set_context_tokens(token_ids, nr_feat)
 | 
						|
            memset(vectors, 0, nr_hidden * nr_piece * sizeof(float))
 | 
						|
            memset(scores, 0, nr_class * sizeof(float))
 | 
						|
            sum_state_features(vectors,
 | 
						|
                feat_weights, token_ids, 1, nr_feat, nr_hidden * nr_piece)
 | 
						|
            V = vectors
 | 
						|
            W = hW
 | 
						|
            for i in range(nr_hidden):
 | 
						|
                feature = V[0] if V[0] >= V[1] else V[1]
 | 
						|
                for j in range(nr_class):
 | 
						|
                    scores[j] += feature * W[j]
 | 
						|
                W += nr_class
 | 
						|
                V += nr_piece
 | 
						|
            for i in range(nr_class):
 | 
						|
                scores[i] += hb[i]
 | 
						|
            self.moves.set_valid(is_valid, state)
 | 
						|
            guess = arg_max_if_valid(scores, is_valid, nr_class)
 | 
						|
            action = self.moves.c[guess]
 | 
						|
            action.do(state, action.label)
 | 
						|
            state.push_hist(guess)
 | 
						|
        free(token_ids)
 | 
						|
        free(is_valid)
 | 
						|
        free(vectors)
 | 
						|
        free(scores)
 | 
						|
 | 
						|
    def beam_parse(self, docs, int beam_width=3, float beam_density=0.001):
 | 
						|
        cdef Beam beam
 | 
						|
        cdef np.ndarray scores
 | 
						|
        cdef Doc doc
 | 
						|
        cdef int nr_class = self.moves.n_moves
 | 
						|
        cdef StateClass stcls, output
 | 
						|
        cuda_stream = get_cuda_stream()
 | 
						|
        (tokvecs, bp_tokvecs), state2vec, vec2scores = self.get_batch_model(docs, cuda_stream,
 | 
						|
                                                                            0.0)
 | 
						|
        beams = []
 | 
						|
        cdef int offset = 0
 | 
						|
        cdef int j = 0
 | 
						|
        cdef int k
 | 
						|
        for doc in docs:
 | 
						|
            beam = Beam(nr_class, beam_width, min_density=beam_density)
 | 
						|
            beam.initialize(self.moves.init_beam_state, doc.length, doc.c)
 | 
						|
            for i in range(beam.width):
 | 
						|
                stcls = <StateClass>beam.at(i)
 | 
						|
                stcls.c.offset = offset
 | 
						|
            offset += len(doc)
 | 
						|
            beam.check_done(_check_final_state, NULL)
 | 
						|
            while not beam.is_done:
 | 
						|
                states = []
 | 
						|
                for i in range(beam.size):
 | 
						|
                    stcls = <StateClass>beam.at(i)
 | 
						|
                    # This way we avoid having to score finalized states
 | 
						|
                    # We do have to take care to keep indexes aligned, though
 | 
						|
                    if not stcls.is_final():
 | 
						|
                        states.append(stcls)
 | 
						|
                token_ids = self.get_token_ids(states)
 | 
						|
                vectors = state2vec(token_ids)
 | 
						|
                if self.cfg.get('hist_size', 0):
 | 
						|
                    hists = numpy.asarray([st.history[:self.cfg['hist_size']]
 | 
						|
                                           for st in states], dtype='i')
 | 
						|
                    scores = vec2scores((vectors, hists))
 | 
						|
                else:
 | 
						|
                    scores = vec2scores(vectors)
 | 
						|
                j = 0
 | 
						|
                c_scores = <float*>scores.data
 | 
						|
                for i in range(beam.size):
 | 
						|
                    stcls = <StateClass>beam.at(i)
 | 
						|
                    if not stcls.is_final():
 | 
						|
                        self.moves.set_valid(beam.is_valid[i], stcls.c)
 | 
						|
                        for k in range(nr_class):
 | 
						|
                            beam.scores[i][k] = c_scores[j * scores.shape[1] + k]
 | 
						|
                        j += 1
 | 
						|
                beam.advance(_transition_state, _hash_state, <void*>self.moves.c)
 | 
						|
                beam.check_done(_check_final_state, NULL)
 | 
						|
            beams.append(beam)
 | 
						|
        return beams
 | 
						|
 | 
						|
    def update(self, docs, golds, drop=0., sgd=None, losses=None):
 | 
						|
        if not any(self.moves.has_gold(gold) for gold in golds):
 | 
						|
            return None
 | 
						|
        if self.cfg.get('beam_width', 1) >= 2 and numpy.random.random() >= 0.5:
 | 
						|
            return self.update_beam(docs, golds,
 | 
						|
                    self.cfg['beam_width'], self.cfg['beam_density'],
 | 
						|
                    drop=drop, sgd=sgd, losses=losses)
 | 
						|
        if losses is not None and self.name not in losses:
 | 
						|
            losses[self.name] = 0.
 | 
						|
        if isinstance(docs, Doc) and isinstance(golds, GoldParse):
 | 
						|
            docs = [docs]
 | 
						|
            golds = [golds]
 | 
						|
 | 
						|
        cuda_stream = get_cuda_stream()
 | 
						|
 | 
						|
        states, golds, max_steps = self._init_gold_batch(docs, golds)
 | 
						|
        (tokvecs, bp_tokvecs), state2vec, vec2scores = self.get_batch_model(docs, cuda_stream,
 | 
						|
                                                                            drop)
 | 
						|
        todo = [(s, g) for (s, g) in zip(states, golds)
 | 
						|
                if not s.is_final() and g is not None]
 | 
						|
        if not todo:
 | 
						|
            return None
 | 
						|
 | 
						|
        backprops = []
 | 
						|
        d_tokvecs = state2vec.ops.allocate(tokvecs.shape)
 | 
						|
        cdef float loss = 0.
 | 
						|
        n_steps = 0
 | 
						|
        while todo:
 | 
						|
            states, golds = zip(*todo)
 | 
						|
 | 
						|
            token_ids = self.get_token_ids(states)
 | 
						|
            vector, bp_vector = state2vec.begin_update(token_ids, drop=0.0)
 | 
						|
            if drop != 0:
 | 
						|
                mask = vec2scores.ops.get_dropout_mask(vector.shape, drop)
 | 
						|
                vector *= mask
 | 
						|
            hists = numpy.asarray([st.history for st in states], dtype='i')
 | 
						|
            if self.cfg.get('hist_size', 0):
 | 
						|
                scores, bp_scores = vec2scores.begin_update((vector, hists), drop=drop)
 | 
						|
            else:
 | 
						|
                scores, bp_scores = vec2scores.begin_update(vector, drop=drop)
 | 
						|
 | 
						|
            d_scores = self.get_batch_loss(states, golds, scores)
 | 
						|
            d_scores /= len(docs)
 | 
						|
            d_vector = bp_scores(d_scores, sgd=sgd)
 | 
						|
            if drop != 0:
 | 
						|
                d_vector *= mask
 | 
						|
 | 
						|
            if isinstance(self.model[0].ops, CupyOps) \
 | 
						|
            and not isinstance(token_ids, state2vec.ops.xp.ndarray):
 | 
						|
                # Move token_ids and d_vector to GPU, asynchronously
 | 
						|
                backprops.append((
 | 
						|
                    get_async(cuda_stream, token_ids),
 | 
						|
                    get_async(cuda_stream, d_vector),
 | 
						|
                    bp_vector
 | 
						|
                ))
 | 
						|
            else:
 | 
						|
                backprops.append((token_ids, d_vector, bp_vector))
 | 
						|
            self.transition_batch(states, scores)
 | 
						|
            todo = [(st, gold) for (st, gold) in todo
 | 
						|
                    if not st.is_final()]
 | 
						|
            if losses is not None:
 | 
						|
                losses[self.name] += (d_scores**2).sum()
 | 
						|
            n_steps += 1
 | 
						|
            if n_steps >= max_steps:
 | 
						|
                break
 | 
						|
        self._make_updates(d_tokvecs,
 | 
						|
            bp_tokvecs, backprops, sgd, cuda_stream)
 | 
						|
 | 
						|
    def update_beam(self, docs, golds, width=None, density=None,
 | 
						|
            drop=0., sgd=None, losses=None):
 | 
						|
        if not any(self.moves.has_gold(gold) for gold in golds):
 | 
						|
            return None
 | 
						|
        if not golds:
 | 
						|
            return None
 | 
						|
        if width is None:
 | 
						|
            width = self.cfg.get('beam_width', 2)
 | 
						|
        if density is None:
 | 
						|
            density = self.cfg.get('beam_density', 0.0)
 | 
						|
        if losses is not None and self.name not in losses:
 | 
						|
            losses[self.name] = 0.
 | 
						|
        lengths = [len(d) for d in docs]
 | 
						|
        assert min(lengths) >= 1
 | 
						|
        states = self.moves.init_batch(docs)
 | 
						|
        for gold in golds:
 | 
						|
            self.moves.preprocess_gold(gold)
 | 
						|
 | 
						|
        cuda_stream = get_cuda_stream()
 | 
						|
        (tokvecs, bp_tokvecs), state2vec, vec2scores = self.get_batch_model(docs, cuda_stream, drop)
 | 
						|
 | 
						|
        states_d_scores, backprops = _beam_utils.update_beam(self.moves, self.nr_feature, 500,
 | 
						|
                                        states, golds,
 | 
						|
                                        state2vec, vec2scores,
 | 
						|
                                        width, density, self.cfg.get('hist_size', 0),
 | 
						|
                                        drop=drop, losses=losses)
 | 
						|
        backprop_lower = []
 | 
						|
        cdef float batch_size = len(docs)
 | 
						|
        for i, d_scores in enumerate(states_d_scores):
 | 
						|
            d_scores /= batch_size
 | 
						|
            if losses is not None:
 | 
						|
                losses[self.name] += (d_scores**2).sum()
 | 
						|
            ids, bp_vectors, bp_scores = backprops[i]
 | 
						|
            d_vector = bp_scores(d_scores, sgd=sgd)
 | 
						|
            if isinstance(self.model[0].ops, CupyOps) \
 | 
						|
            and not isinstance(ids, state2vec.ops.xp.ndarray):
 | 
						|
                backprop_lower.append((
 | 
						|
                    get_async(cuda_stream, ids),
 | 
						|
                    get_async(cuda_stream, d_vector),
 | 
						|
                    bp_vectors))
 | 
						|
            else:
 | 
						|
                backprop_lower.append((ids, d_vector, bp_vectors))
 | 
						|
        d_tokvecs = self.model[0].ops.allocate(tokvecs.shape)
 | 
						|
        self._make_updates(d_tokvecs, bp_tokvecs, backprop_lower, sgd, cuda_stream)
 | 
						|
 | 
						|
    def _init_gold_batch(self, whole_docs, whole_golds):
 | 
						|
        """Make a square batch, of length equal to the shortest doc. A long
 | 
						|
        doc will get multiple states. Let's say we have a doc of length 2*N,
 | 
						|
        where N is the shortest doc. We'll make two states, one representing
 | 
						|
        long_doc[:N], and another representing long_doc[N:]."""
 | 
						|
        cdef:
 | 
						|
            StateClass state
 | 
						|
            Transition action
 | 
						|
        whole_states = self.moves.init_batch(whole_docs)
 | 
						|
        max_length = max(5, min(50, min([len(doc) for doc in whole_docs])))
 | 
						|
        max_moves = 0
 | 
						|
        states = []
 | 
						|
        golds = []
 | 
						|
        for doc, state, gold in zip(whole_docs, whole_states, whole_golds):
 | 
						|
            gold = self.moves.preprocess_gold(gold)
 | 
						|
            if gold is None:
 | 
						|
                continue
 | 
						|
            oracle_actions = self.moves.get_oracle_sequence(doc, gold)
 | 
						|
            start = 0
 | 
						|
            while start < len(doc):
 | 
						|
                state = state.copy()
 | 
						|
                n_moves = 0
 | 
						|
                while state.B(0) < start and not state.is_final():
 | 
						|
                    action = self.moves.c[oracle_actions.pop(0)]
 | 
						|
                    action.do(state.c, action.label)
 | 
						|
                    state.c.push_hist(action.clas)
 | 
						|
                    n_moves += 1
 | 
						|
                has_gold = self.moves.has_gold(gold, start=start,
 | 
						|
                                               end=start+max_length)
 | 
						|
                if not state.is_final() and has_gold:
 | 
						|
                    states.append(state)
 | 
						|
                    golds.append(gold)
 | 
						|
                    max_moves = max(max_moves, n_moves)
 | 
						|
                start += min(max_length, len(doc)-start)
 | 
						|
            max_moves = max(max_moves, len(oracle_actions))
 | 
						|
        return states, golds, max_moves
 | 
						|
 | 
						|
    def _make_updates(self, d_tokvecs, bp_tokvecs, backprops, sgd, cuda_stream=None):
 | 
						|
        # Tells CUDA to block, so our async copies complete.
 | 
						|
        if cuda_stream is not None:
 | 
						|
            cuda_stream.synchronize()
 | 
						|
        xp = get_array_module(d_tokvecs)
 | 
						|
        for ids, d_vector, bp_vector in backprops:
 | 
						|
            d_state_features = bp_vector(d_vector, sgd=sgd)
 | 
						|
            mask = ids >= 0
 | 
						|
            d_state_features *= mask.reshape(ids.shape + (1,))
 | 
						|
            self.model[0].ops.scatter_add(d_tokvecs, ids * mask,
 | 
						|
                d_state_features)
 | 
						|
        bp_tokvecs(d_tokvecs, sgd=sgd)
 | 
						|
 | 
						|
    @property
 | 
						|
    def move_names(self):
 | 
						|
        names = []
 | 
						|
        for i in range(self.moves.n_moves):
 | 
						|
            name = self.moves.move_name(self.moves.c[i].move, self.moves.c[i].label)
 | 
						|
            names.append(name)
 | 
						|
        return names
 | 
						|
 | 
						|
    def get_batch_model(self, docs, stream, dropout):
 | 
						|
        tok2vec, lower, upper = self.model
 | 
						|
        tokvecs, bp_tokvecs = tok2vec.begin_update(docs, drop=dropout)
 | 
						|
        state2vec = precompute_hiddens(len(docs), tokvecs,
 | 
						|
                                       lower, stream, drop=0.0)
 | 
						|
        return (tokvecs, bp_tokvecs), state2vec, upper
 | 
						|
 | 
						|
    nr_feature = 8
 | 
						|
 | 
						|
    def get_token_ids(self, states):
 | 
						|
        cdef StateClass state
 | 
						|
        cdef int n_tokens = self.nr_feature
 | 
						|
        cdef np.ndarray ids = numpy.zeros((len(states), n_tokens),
 | 
						|
                                          dtype='i', order='C')
 | 
						|
        c_ids = <int*>ids.data
 | 
						|
        for i, state in enumerate(states):
 | 
						|
            if not state.is_final():
 | 
						|
                state.c.set_context_tokens(c_ids, n_tokens)
 | 
						|
            c_ids += ids.shape[1]
 | 
						|
        return ids
 | 
						|
 | 
						|
    def transition_batch(self, states, float[:, ::1] scores):
 | 
						|
        cdef StateClass state
 | 
						|
        cdef int[500] is_valid # TODO: Unhack
 | 
						|
        cdef float* c_scores = &scores[0, 0]
 | 
						|
        for state in states:
 | 
						|
            self.moves.set_valid(is_valid, state.c)
 | 
						|
            guess = arg_max_if_valid(c_scores, is_valid, scores.shape[1])
 | 
						|
            action = self.moves.c[guess]
 | 
						|
            action.do(state.c, action.label)
 | 
						|
            c_scores += scores.shape[1]
 | 
						|
            state.c.push_hist(guess)
 | 
						|
 | 
						|
    def get_batch_loss(self, states, golds, float[:, ::1] scores):
 | 
						|
        cdef StateClass state
 | 
						|
        cdef GoldParse gold
 | 
						|
        cdef Pool mem = Pool()
 | 
						|
        cdef int i
 | 
						|
        is_valid = <int*>mem.alloc(self.moves.n_moves, sizeof(int))
 | 
						|
        costs = <float*>mem.alloc(self.moves.n_moves, sizeof(float))
 | 
						|
        cdef np.ndarray d_scores = numpy.zeros((len(states), self.moves.n_moves),
 | 
						|
                                        dtype='f', order='C')
 | 
						|
        c_d_scores = <float*>d_scores.data
 | 
						|
        for i, (state, gold) in enumerate(zip(states, golds)):
 | 
						|
            memset(is_valid, 0, self.moves.n_moves * sizeof(int))
 | 
						|
            memset(costs, 0, self.moves.n_moves * sizeof(float))
 | 
						|
            self.moves.set_costs(is_valid, costs, state, gold)
 | 
						|
            cpu_log_loss(c_d_scores,
 | 
						|
                costs, is_valid, &scores[i, 0], d_scores.shape[1])
 | 
						|
            c_d_scores += d_scores.shape[1]
 | 
						|
        return d_scores
 | 
						|
 | 
						|
    def set_annotations(self, docs, states):
 | 
						|
        cdef StateClass state
 | 
						|
        cdef Doc doc
 | 
						|
        for state, doc in zip(states, docs):
 | 
						|
            self.moves.finalize_state(state.c)
 | 
						|
            for i in range(doc.length):
 | 
						|
                doc.c[i] = state.c._sent[i]
 | 
						|
            self.moves.finalize_doc(doc)
 | 
						|
            for hook in self.postprocesses:
 | 
						|
                for doc in docs:
 | 
						|
                    hook(doc)
 | 
						|
 | 
						|
    @property
 | 
						|
    def postprocesses(self):
 | 
						|
        # Available for subclasses, e.g. to deprojectivize
 | 
						|
        return []
 | 
						|
 | 
						|
    def add_label(self, label):
 | 
						|
        resized = False
 | 
						|
        for action in self.moves.action_types:
 | 
						|
            added = self.moves.add_action(action, label)
 | 
						|
            if added:
 | 
						|
                # Important that the labels be stored as a list! We need the
 | 
						|
                # order, or the model goes out of synch
 | 
						|
                self.cfg.setdefault('extra_labels', []).append(label)
 | 
						|
                resized = True
 | 
						|
        if self.model not in (True, False, None) and resized:
 | 
						|
            # Weights are stored in (nr_out, nr_in) format, so we're basically
 | 
						|
            # just adding rows here.
 | 
						|
            smaller = self.model[-1]._layers[-1]
 | 
						|
            larger = Affine(self.moves.n_moves, smaller.nI)
 | 
						|
            copy_array(larger.W[:smaller.nO], smaller.W)
 | 
						|
            copy_array(larger.b[:smaller.nO], smaller.b)
 | 
						|
            self.model[-1]._layers[-1] = larger
 | 
						|
 | 
						|
    def begin_training(self, gold_tuples, pipeline=None, **cfg):
 | 
						|
        if 'model' in cfg:
 | 
						|
            self.model = cfg['model']
 | 
						|
        gold_tuples = nonproj.preprocess_training_data(gold_tuples, label_freq_cutoff=100)
 | 
						|
        actions = self.moves.get_actions(gold_parses=gold_tuples)
 | 
						|
        for action, labels in actions.items():
 | 
						|
            for label in labels:
 | 
						|
                self.moves.add_action(action, label)
 | 
						|
        if self.model is True:
 | 
						|
            cfg['pretrained_dims'] = self.vocab.vectors_length
 | 
						|
            self.model, cfg = self.Model(self.moves.n_moves, **cfg)
 | 
						|
            self.init_multitask_objectives(gold_tuples, pipeline, **cfg)
 | 
						|
            link_vectors_to_models(self.vocab)
 | 
						|
            self.cfg.update(cfg)
 | 
						|
 | 
						|
    def init_multitask_objectives(self, gold_tuples, pipeline, **cfg):
 | 
						|
        '''Setup models for secondary objectives, to benefit from multi-task
 | 
						|
        learning. This method is intended to be overridden by subclasses.
 | 
						|
 | 
						|
        For instance, the dependency parser can benefit from sharing
 | 
						|
        an input representation with a label prediction model. These auxiliary
 | 
						|
        models are discarded after training.
 | 
						|
        '''
 | 
						|
        pass
 | 
						|
 | 
						|
    def preprocess_gold(self, docs_golds):
 | 
						|
        for doc, gold in docs_golds:
 | 
						|
            yield doc, gold
 | 
						|
 | 
						|
    def use_params(self, params):
 | 
						|
        # Can't decorate cdef class :(. Workaround.
 | 
						|
        with self.model[0].use_params(params):
 | 
						|
            with self.model[1].use_params(params):
 | 
						|
                yield
 | 
						|
 | 
						|
    def to_disk(self, path, **exclude):
 | 
						|
        serializers = {
 | 
						|
            'tok2vec_model': lambda p: p.open('wb').write(
 | 
						|
                self.model[0].to_bytes()),
 | 
						|
            'lower_model': lambda p: p.open('wb').write(
 | 
						|
                self.model[1].to_bytes()),
 | 
						|
            'upper_model': lambda p: p.open('wb').write(
 | 
						|
                self.model[2].to_bytes()),
 | 
						|
            'vocab': lambda p: self.vocab.to_disk(p),
 | 
						|
            'moves': lambda p: self.moves.to_disk(p, strings=False),
 | 
						|
            'cfg': lambda p: p.open('w').write(json_dumps(self.cfg))
 | 
						|
        }
 | 
						|
        util.to_disk(path, serializers, exclude)
 | 
						|
 | 
						|
    def from_disk(self, path, **exclude):
 | 
						|
        deserializers = {
 | 
						|
            'vocab': lambda p: self.vocab.from_disk(p),
 | 
						|
            'moves': lambda p: self.moves.from_disk(p, strings=False),
 | 
						|
            'cfg': lambda p: self.cfg.update(ujson.load(p.open())),
 | 
						|
            'model': lambda p: None
 | 
						|
        }
 | 
						|
        util.from_disk(path, deserializers, exclude)
 | 
						|
        if 'model' not in exclude:
 | 
						|
            path = util.ensure_path(path)
 | 
						|
            if self.model is True:
 | 
						|
                self.cfg['pretrained_dims'] = self.vocab.vectors_length
 | 
						|
                self.model, cfg = self.Model(**self.cfg)
 | 
						|
            else:
 | 
						|
                cfg = {}
 | 
						|
            with (path / 'tok2vec_model').open('rb') as file_:
 | 
						|
                bytes_data = file_.read()
 | 
						|
            self.model[0].from_bytes(bytes_data)
 | 
						|
            with (path / 'lower_model').open('rb') as file_:
 | 
						|
                bytes_data = file_.read()
 | 
						|
            self.model[1].from_bytes(bytes_data)
 | 
						|
            with (path / 'upper_model').open('rb') as file_:
 | 
						|
                bytes_data = file_.read()
 | 
						|
            self.model[2].from_bytes(bytes_data)
 | 
						|
            self.cfg.update(cfg)
 | 
						|
        return self
 | 
						|
 | 
						|
    def to_bytes(self, **exclude):
 | 
						|
        serializers = OrderedDict((
 | 
						|
            ('tok2vec_model', lambda: self.model[0].to_bytes()),
 | 
						|
            ('lower_model', lambda: self.model[1].to_bytes()),
 | 
						|
            ('upper_model', lambda: self.model[2].to_bytes()),
 | 
						|
            ('vocab', lambda: self.vocab.to_bytes()),
 | 
						|
            ('moves', lambda: self.moves.to_bytes(strings=False)),
 | 
						|
            ('cfg', lambda: json.dumps(self.cfg, indent=2, sort_keys=True))
 | 
						|
        ))
 | 
						|
        if 'model' in exclude:
 | 
						|
            exclude['tok2vec_model'] = True
 | 
						|
            exclude['lower_model'] = True
 | 
						|
            exclude['upper_model'] = True
 | 
						|
            exclude.pop('model')
 | 
						|
        return util.to_bytes(serializers, exclude)
 | 
						|
 | 
						|
    def from_bytes(self, bytes_data, **exclude):
 | 
						|
        deserializers = OrderedDict((
 | 
						|
            ('vocab', lambda b: self.vocab.from_bytes(b)),
 | 
						|
            ('moves', lambda b: self.moves.from_bytes(b, strings=False)),
 | 
						|
            ('cfg', lambda b: self.cfg.update(json.loads(b))),
 | 
						|
            ('tok2vec_model', lambda b: None),
 | 
						|
            ('lower_model', lambda b: None),
 | 
						|
            ('upper_model', lambda b: None)
 | 
						|
        ))
 | 
						|
        msg = util.from_bytes(bytes_data, deserializers, exclude)
 | 
						|
        if 'model' not in exclude:
 | 
						|
            if self.model is True:
 | 
						|
                self.model, cfg = self.Model(**self.cfg)
 | 
						|
                cfg['pretrained_dims'] = self.vocab.vectors_length
 | 
						|
            else:
 | 
						|
                cfg = {}
 | 
						|
            cfg['pretrained_dims'] = self.vocab.vectors_length
 | 
						|
            if 'tok2vec_model' in msg:
 | 
						|
                self.model[0].from_bytes(msg['tok2vec_model'])
 | 
						|
            if 'lower_model' in msg:
 | 
						|
                self.model[1].from_bytes(msg['lower_model'])
 | 
						|
            if 'upper_model' in msg:
 | 
						|
                self.model[2].from_bytes(msg['upper_model'])
 | 
						|
            self.cfg.update(cfg)
 | 
						|
        return self
 | 
						|
 | 
						|
 | 
						|
class ParserStateError(ValueError):
 | 
						|
    def __init__(self, doc):
 | 
						|
        ValueError.__init__(self,
 | 
						|
            "Error analysing doc -- no valid actions available. This should "
 | 
						|
            "never happen, so please report the error on the issue tracker. "
 | 
						|
            "Here's the thread to do so --- reopen it if it's closed:\n"
 | 
						|
            "https://github.com/spacy-io/spaCy/issues/429\n"
 | 
						|
            "Please include the text that the parser failed on, which is:\n"
 | 
						|
            "%s" % repr(doc.text))
 | 
						|
 | 
						|
 | 
						|
cdef int arg_max_if_gold(const weight_t* scores, const weight_t* costs, const int* is_valid, int n) nogil:
 | 
						|
    # Find minimum cost
 | 
						|
    cdef float cost = 1
 | 
						|
    for i in range(n):
 | 
						|
        if is_valid[i] and costs[i] < cost:
 | 
						|
            cost = costs[i]
 | 
						|
    # Now find best-scoring with that cost
 | 
						|
    cdef int best = -1
 | 
						|
    for i in range(n):
 | 
						|
        if costs[i] <= cost and is_valid[i]:
 | 
						|
            if best == -1 or scores[i] > scores[best]:
 | 
						|
                best = i
 | 
						|
    return best
 | 
						|
 | 
						|
 | 
						|
cdef int arg_max_if_valid(const weight_t* scores, const int* is_valid, int n) nogil:
 | 
						|
    cdef int best = -1
 | 
						|
    for i in range(n):
 | 
						|
        if is_valid[i] >= 1:
 | 
						|
            if best == -1 or scores[i] > scores[best]:
 | 
						|
                best = i
 | 
						|
    return best
 | 
						|
 | 
						|
 | 
						|
# These are passed as callbacks to thinc.search.Beam
 | 
						|
cdef int _transition_state(void* _dest, void* _src, class_t clas, void* _moves) except -1:
 | 
						|
    dest = <StateClass>_dest
 | 
						|
    src = <StateClass>_src
 | 
						|
    moves = <const Transition*>_moves
 | 
						|
    dest.clone(src)
 | 
						|
    moves[clas].do(dest.c, moves[clas].label)
 | 
						|
    dest.c.push_hist(clas)
 | 
						|
 | 
						|
 | 
						|
cdef int _check_final_state(void* _state, void* extra_args) except -1:
 | 
						|
    return (<StateClass>_state).is_final()
 | 
						|
 | 
						|
 | 
						|
def _cleanup(Beam beam):
 | 
						|
    for i in range(beam.width):
 | 
						|
        Py_XDECREF(<PyObject*>beam._states[i].content)
 | 
						|
        Py_XDECREF(<PyObject*>beam._parents[i].content)
 | 
						|
 | 
						|
 | 
						|
cdef hash_t _hash_state(void* _state, void* _) except 0:
 | 
						|
    state = <StateClass>_state
 | 
						|
    if state.c.is_final():
 | 
						|
        return 1
 | 
						|
    else:
 | 
						|
        return state.c.hash()
 |