spaCy/spacy/pipeline/entityruler.py
Connor Brinton 657af5f91f
🏷 Add Mypy check to CI and ignore all existing Mypy errors (#9167)
* 🚨 Ignore all existing Mypy errors

* 🏗 Add Mypy check to CI

* Add types-mock and types-requests as dev requirements

* Add additional type ignore directives

* Add types packages to dev-only list in reqs test

* Add types-dataclasses for python 3.6

* Add ignore to pretrain

* 🏷 Improve type annotation on `run_command` helper

The `run_command` helper previously declared that it returned an
`Optional[subprocess.CompletedProcess]`, but it isn't actually possible
for the function to return `None`. These changes modify the type
annotation of the `run_command` helper and remove all now-unnecessary
`# type: ignore` directives.

* 🔧 Allow variable type redefinition in limited contexts

These changes modify how Mypy is configured to allow variables to have
their type automatically redefined under certain conditions. The Mypy
documentation contains the following example:

```python
def process(items: List[str]) -> None:
    # 'items' has type List[str]
    items = [item.split() for item in items]
    # 'items' now has type List[List[str]]
    ...
```

This configuration change is especially helpful in reducing the number
of `# type: ignore` directives needed to handle the common pattern of:
* Accepting a filepath as a string
* Overwriting the variable using `filepath = ensure_path(filepath)`

These changes enable redefinition and remove all `# type: ignore`
directives rendered redundant by this change.

* 🏷 Add type annotation to converters mapping

* 🚨 Fix Mypy error in convert CLI argument verification

* 🏷 Improve type annotation on `resolve_dot_names` helper

* 🏷 Add type annotations for `Vocab` attributes `strings` and `vectors`

* 🏷 Add type annotations for more `Vocab` attributes

* 🏷 Add loose type annotation for gold data compilation

* 🏷 Improve `_format_labels` type annotation

* 🏷 Fix `get_lang_class` type annotation

* 🏷 Loosen return type of `Language.evaluate`

* 🏷 Don't accept `Scorer` in `handle_scores_per_type`

* 🏷 Add `string_to_list` overloads

* 🏷 Fix non-Optional command-line options

* 🙈 Ignore redefinition of `wandb_logger` in `loggers.py`

*  Install `typing_extensions` in Python 3.8+

The `typing_extensions` package states that it should be used when
"writing code that must be compatible with multiple Python versions".
Since SpaCy needs to support multiple Python versions, it should be used
when newer `typing` module members are required. One example of this is
`Literal`, which is available starting with Python 3.8.

Previously SpaCy tried to import `Literal` from `typing`, falling back
to `typing_extensions` if the import failed. However, Mypy doesn't seem
to be able to understand what `Literal` means when the initial import
means. Therefore, these changes modify how `compat` imports `Literal` by
always importing it from `typing_extensions`.

These changes also modify how `typing_extensions` is installed, so that
it is a requirement for all Python versions, including those greater
than or equal to 3.8.

* 🏷 Improve type annotation for `Language.pipe`

These changes add a missing overload variant to the type signature of
`Language.pipe`. Additionally, the type signature is enhanced to allow
type checkers to differentiate between the two overload variants based
on the `as_tuple` parameter.

Fixes #8772

*  Don't install `typing-extensions` in Python 3.8+

After more detailed analysis of how to implement Python version-specific
type annotations using SpaCy, it has been determined that by branching
on a comparison against `sys.version_info` can be statically analyzed by
Mypy well enough to enable us to conditionally use
`typing_extensions.Literal`. This means that we no longer need to
install `typing_extensions` for Python versions greater than or equal to
3.8! 🎉

These changes revert previous changes installing `typing-extensions`
regardless of Python version and modify how we import the `Literal` type
to ensure that Mypy treats it properly.

* resolve mypy errors for Strict pydantic types

* refactor code to avoid missing return statement

* fix types of convert CLI command

* avoid list-set confustion in debug_data

* fix typo and formatting

* small fixes to avoid type ignores

* fix types in profile CLI command and make it more efficient

* type fixes in projects CLI

* put one ignore back

* type fixes for render

* fix render types - the sequel

* fix BaseDefault in language definitions

* fix type of noun_chunks iterator - yields tuple instead of span

* fix types in language-specific modules

* 🏷 Expand accepted inputs of `get_string_id`

`get_string_id` accepts either a string (in which case it returns its 
ID) or an ID (in which case it immediately returns the ID). These 
changes extend the type annotation of `get_string_id` to indicate that 
it can accept either strings or IDs.

* 🏷 Handle override types in `combine_score_weights`

The `combine_score_weights` function allows users to pass an `overrides` 
mapping to override data extracted from the `weights` argument. Since it 
allows `Optional` dictionary values, the return value may also include 
`Optional` dictionary values.

These changes update the type annotations for `combine_score_weights` to 
reflect this fact.

* 🏷 Fix tokenizer serialization method signatures in `DummyTokenizer`

* 🏷 Fix redefinition of `wandb_logger`

These changes fix the redefinition of `wandb_logger` by giving a 
separate name to each `WandbLogger` version. For 
backwards-compatibility, `spacy.train` still exports `wandb_logger_v3` 
as `wandb_logger` for now.

* more fixes for typing in language

* type fixes in model definitions

* 🏷 Annotate `_RandomWords.probs` as `NDArray`

* 🏷 Annotate `tok2vec` layers to help Mypy

* 🐛 Fix `_RandomWords.probs` type annotations for Python 3.6

Also remove an import that I forgot to move to the top of the module 😅

* more fixes for matchers and other pipeline components

* quick fix for entity linker

* fixing types for spancat, textcat, etc

* bugfix for tok2vec

* type annotations for scorer

* add runtime_checkable for Protocol

* type and import fixes in tests

* mypy fixes for training utilities

* few fixes in util

* fix import

* 🐵 Remove unused `# type: ignore` directives

* 🏷 Annotate `Language._components`

* 🏷 Annotate `spacy.pipeline.Pipe`

* add doc as property to span.pyi

* small fixes and cleanup

* explicit type annotations instead of via comment

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: svlandeg <svlandeg@github.com>
2021-10-14 15:21:40 +02:00

471 lines
18 KiB
Python

import warnings
from typing import Optional, Union, List, Dict, Tuple, Iterable, Any, Callable, Sequence
from typing import cast
from collections import defaultdict
from pathlib import Path
import srsly
from .pipe import Pipe
from ..training import Example
from ..language import Language
from ..errors import Errors, Warnings
from ..util import ensure_path, to_disk, from_disk, SimpleFrozenList
from ..tokens import Doc, Span
from ..matcher import Matcher, PhraseMatcher
from ..scorer import get_ner_prf
from ..training import validate_examples
DEFAULT_ENT_ID_SEP = "||"
PatternType = Dict[str, Union[str, List[Dict[str, Any]]]]
@Language.factory(
"entity_ruler",
assigns=["doc.ents", "token.ent_type", "token.ent_iob"],
default_config={
"phrase_matcher_attr": None,
"validate": False,
"overwrite_ents": False,
"ent_id_sep": DEFAULT_ENT_ID_SEP,
},
default_score_weights={
"ents_f": 1.0,
"ents_p": 0.0,
"ents_r": 0.0,
"ents_per_type": None,
},
)
def make_entity_ruler(
nlp: Language,
name: str,
phrase_matcher_attr: Optional[Union[int, str]],
validate: bool,
overwrite_ents: bool,
ent_id_sep: str,
):
return EntityRuler(
nlp,
name,
phrase_matcher_attr=phrase_matcher_attr,
validate=validate,
overwrite_ents=overwrite_ents,
ent_id_sep=ent_id_sep,
)
class EntityRuler(Pipe):
"""The EntityRuler lets you add spans to the `Doc.ents` using token-based
rules or exact phrase matches. It can be combined with the statistical
`EntityRecognizer` to boost accuracy, or used on its own to implement a
purely rule-based entity recognition system. After initialization, the
component is typically added to the pipeline using `nlp.add_pipe`.
DOCS: https://spacy.io/api/entityruler
USAGE: https://spacy.io/usage/rule-based-matching#entityruler
"""
def __init__(
self,
nlp: Language,
name: str = "entity_ruler",
*,
phrase_matcher_attr: Optional[Union[int, str]] = None,
validate: bool = False,
overwrite_ents: bool = False,
ent_id_sep: str = DEFAULT_ENT_ID_SEP,
patterns: Optional[List[PatternType]] = None,
) -> None:
"""Initialize the entity ruler. If patterns are supplied here, they
need to be a list of dictionaries with a `"label"` and `"pattern"`
key. A pattern can either be a token pattern (list) or a phrase pattern
(string). For example: `{'label': 'ORG', 'pattern': 'Apple'}`.
nlp (Language): The shared nlp object to pass the vocab to the matchers
and process phrase patterns.
name (str): Instance name of the current pipeline component. Typically
passed in automatically from the factory when the component is
added. Used to disable the current entity ruler while creating
phrase patterns with the nlp object.
phrase_matcher_attr (int / str): Token attribute to match on, passed
to the internal PhraseMatcher as `attr`
validate (bool): Whether patterns should be validated, passed to
Matcher and PhraseMatcher as `validate`
patterns (iterable): Optional patterns to load in.
overwrite_ents (bool): If existing entities are present, e.g. entities
added by the model, overwrite them by matches if necessary.
ent_id_sep (str): Separator used internally for entity IDs.
DOCS: https://spacy.io/api/entityruler#init
"""
self.nlp = nlp
self.name = name
self.overwrite = overwrite_ents
self.token_patterns = defaultdict(list) # type: ignore
self.phrase_patterns = defaultdict(list) # type: ignore
self._validate = validate
self.matcher = Matcher(nlp.vocab, validate=validate)
self.phrase_matcher_attr = phrase_matcher_attr
self.phrase_matcher = PhraseMatcher(
nlp.vocab, attr=self.phrase_matcher_attr, validate=validate
)
self.ent_id_sep = ent_id_sep
self._ent_ids = defaultdict(tuple) # type: ignore
if patterns is not None:
self.add_patterns(patterns)
def __len__(self) -> int:
"""The number of all patterns added to the entity ruler."""
n_token_patterns = sum(len(p) for p in self.token_patterns.values())
n_phrase_patterns = sum(len(p) for p in self.phrase_patterns.values())
return n_token_patterns + n_phrase_patterns
def __contains__(self, label: str) -> bool:
"""Whether a label is present in the patterns."""
return label in self.token_patterns or label in self.phrase_patterns
def __call__(self, doc: Doc) -> Doc:
"""Find matches in document and add them as entities.
doc (Doc): The Doc object in the pipeline.
RETURNS (Doc): The Doc with added entities, if available.
DOCS: https://spacy.io/api/entityruler#call
"""
error_handler = self.get_error_handler()
try:
matches = self.match(doc)
self.set_annotations(doc, matches)
return doc
except Exception as e:
return error_handler(self.name, self, [doc], e)
def match(self, doc: Doc):
self._require_patterns()
with warnings.catch_warnings():
warnings.filterwarnings("ignore", message="\\[W036")
matches = cast(
List[Tuple[int, int, int]],
list(self.matcher(doc)) + list(self.phrase_matcher(doc)),
)
final_matches = set(
[(m_id, start, end) for m_id, start, end in matches if start != end]
)
get_sort_key = lambda m: (m[2] - m[1], -m[1])
final_matches = sorted(final_matches, key=get_sort_key, reverse=True)
return final_matches
def set_annotations(self, doc, matches):
"""Modify the document in place"""
entities = list(doc.ents)
new_entities = []
seen_tokens = set()
for match_id, start, end in matches:
if any(t.ent_type for t in doc[start:end]) and not self.overwrite:
continue
# check for end - 1 here because boundaries are inclusive
if start not in seen_tokens and end - 1 not in seen_tokens:
if match_id in self._ent_ids:
label, ent_id = self._ent_ids[match_id]
span = Span(doc, start, end, label=label)
if ent_id:
for token in span:
token.ent_id_ = ent_id
else:
span = Span(doc, start, end, label=match_id)
new_entities.append(span)
entities = [
e for e in entities if not (e.start < end and e.end > start)
]
seen_tokens.update(range(start, end))
doc.ents = entities + new_entities
@property
def labels(self) -> Tuple[str, ...]:
"""All labels present in the match patterns.
RETURNS (set): The string labels.
DOCS: https://spacy.io/api/entityruler#labels
"""
keys = set(self.token_patterns.keys())
keys.update(self.phrase_patterns.keys())
all_labels = set()
for l in keys:
if self.ent_id_sep in l:
label, _ = self._split_label(l)
all_labels.add(label)
else:
all_labels.add(l)
return tuple(sorted(all_labels))
def initialize(
self,
get_examples: Callable[[], Iterable[Example]],
*,
nlp: Optional[Language] = None,
patterns: Optional[Sequence[PatternType]] = None,
):
"""Initialize the pipe for training.
get_examples (Callable[[], Iterable[Example]]): Function that
returns a representative sample of gold-standard Example objects.
nlp (Language): The current nlp object the component is part of.
patterns Optional[Iterable[PatternType]]: The list of patterns.
DOCS: https://spacy.io/api/entityruler#initialize
"""
self.clear()
if patterns:
self.add_patterns(patterns) # type: ignore[arg-type]
@property
def ent_ids(self) -> Tuple[Optional[str], ...]:
"""All entity ids present in the match patterns `id` properties
RETURNS (set): The string entity ids.
DOCS: https://spacy.io/api/entityruler#ent_ids
"""
keys = set(self.token_patterns.keys())
keys.update(self.phrase_patterns.keys())
all_ent_ids = set()
for l in keys:
if self.ent_id_sep in l:
_, ent_id = self._split_label(l)
all_ent_ids.add(ent_id)
return tuple(all_ent_ids)
@property
def patterns(self) -> List[PatternType]:
"""Get all patterns that were added to the entity ruler.
RETURNS (list): The original patterns, one dictionary per pattern.
DOCS: https://spacy.io/api/entityruler#patterns
"""
all_patterns = []
for label, patterns in self.token_patterns.items():
for pattern in patterns:
ent_label, ent_id = self._split_label(label)
p = {"label": ent_label, "pattern": pattern}
if ent_id:
p["id"] = ent_id
all_patterns.append(p)
for label, patterns in self.phrase_patterns.items():
for pattern in patterns:
ent_label, ent_id = self._split_label(label)
p = {"label": ent_label, "pattern": pattern.text}
if ent_id:
p["id"] = ent_id
all_patterns.append(p)
return all_patterns
def add_patterns(self, patterns: List[PatternType]) -> None:
"""Add patterns to the entity ruler. A pattern can either be a token
pattern (list of dicts) or a phrase pattern (string). For example:
{'label': 'ORG', 'pattern': 'Apple'}
{'label': 'GPE', 'pattern': [{'lower': 'san'}, {'lower': 'francisco'}]}
patterns (list): The patterns to add.
DOCS: https://spacy.io/api/entityruler#add_patterns
"""
# disable the nlp components after this one in case they hadn't been initialized / deserialised yet
try:
current_index = -1
for i, (name, pipe) in enumerate(self.nlp.pipeline):
if self == pipe:
current_index = i
break
subsequent_pipes = [pipe for pipe in self.nlp.pipe_names[current_index:]]
except ValueError:
subsequent_pipes = []
with self.nlp.select_pipes(disable=subsequent_pipes):
token_patterns = []
phrase_pattern_labels = []
phrase_pattern_texts = []
phrase_pattern_ids = []
for entry in patterns:
if isinstance(entry["pattern"], str):
phrase_pattern_labels.append(entry["label"])
phrase_pattern_texts.append(entry["pattern"])
phrase_pattern_ids.append(entry.get("id"))
elif isinstance(entry["pattern"], list):
token_patterns.append(entry)
phrase_patterns = []
for label, pattern, ent_id in zip(
phrase_pattern_labels,
self.nlp.pipe(phrase_pattern_texts),
phrase_pattern_ids,
):
phrase_pattern = {"label": label, "pattern": pattern}
if ent_id:
phrase_pattern["id"] = ent_id
phrase_patterns.append(phrase_pattern)
for entry in token_patterns + phrase_patterns: # type: ignore[operator]
label = entry["label"]
if "id" in entry:
ent_label = label
label = self._create_label(label, entry["id"])
key = self.matcher._normalize_key(label)
self._ent_ids[key] = (ent_label, entry["id"])
pattern = entry["pattern"] # type: ignore
if isinstance(pattern, Doc):
self.phrase_patterns[label].append(pattern)
self.phrase_matcher.add(label, [pattern]) # type: ignore
elif isinstance(pattern, list):
self.token_patterns[label].append(pattern)
self.matcher.add(label, [pattern])
else:
raise ValueError(Errors.E097.format(pattern=pattern))
def clear(self) -> None:
"""Reset all patterns."""
self.token_patterns = defaultdict(list)
self.phrase_patterns = defaultdict(list)
self._ent_ids = defaultdict(tuple)
self.matcher = Matcher(self.nlp.vocab, validate=self._validate)
self.phrase_matcher = PhraseMatcher(
self.nlp.vocab, attr=self.phrase_matcher_attr, validate=self._validate
)
def _require_patterns(self) -> None:
"""Raise a warning if this component has no patterns defined."""
if len(self) == 0:
warnings.warn(Warnings.W036.format(name=self.name))
def _split_label(self, label: str) -> Tuple[str, Optional[str]]:
"""Split Entity label into ent_label and ent_id if it contains self.ent_id_sep
label (str): The value of label in a pattern entry
RETURNS (tuple): ent_label, ent_id
"""
if self.ent_id_sep in label:
ent_label, ent_id = label.rsplit(self.ent_id_sep, 1)
else:
ent_label = label
ent_id = None # type: ignore
return ent_label, ent_id
def _create_label(self, label: Any, ent_id: Any) -> str:
"""Join Entity label with ent_id if the pattern has an `id` attribute
If ent_id is not a string, the label is returned as is.
label (str): The label to set for ent.label_
ent_id (str): The label
RETURNS (str): The ent_label joined with configured `ent_id_sep`
"""
if isinstance(ent_id, str):
label = f"{label}{self.ent_id_sep}{ent_id}"
return label
def score(self, examples, **kwargs):
validate_examples(examples, "EntityRuler.score")
return get_ner_prf(examples)
def from_bytes(
self, patterns_bytes: bytes, *, exclude: Iterable[str] = SimpleFrozenList()
) -> "EntityRuler":
"""Load the entity ruler from a bytestring.
patterns_bytes (bytes): The bytestring to load.
RETURNS (EntityRuler): The loaded entity ruler.
DOCS: https://spacy.io/api/entityruler#from_bytes
"""
cfg = srsly.msgpack_loads(patterns_bytes)
self.clear()
if isinstance(cfg, dict):
self.add_patterns(cfg.get("patterns", cfg))
self.overwrite = cfg.get("overwrite", False)
self.phrase_matcher_attr = cfg.get("phrase_matcher_attr", None)
self.phrase_matcher = PhraseMatcher(
self.nlp.vocab, attr=self.phrase_matcher_attr
)
self.ent_id_sep = cfg.get("ent_id_sep", DEFAULT_ENT_ID_SEP)
else:
self.add_patterns(cfg)
return self
def to_bytes(self, *, exclude: Iterable[str] = SimpleFrozenList()) -> bytes:
"""Serialize the entity ruler patterns to a bytestring.
RETURNS (bytes): The serialized patterns.
DOCS: https://spacy.io/api/entityruler#to_bytes
"""
serial = {
"overwrite": self.overwrite,
"ent_id_sep": self.ent_id_sep,
"phrase_matcher_attr": self.phrase_matcher_attr,
"patterns": self.patterns,
}
return srsly.msgpack_dumps(serial)
def from_disk(
self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList()
) -> "EntityRuler":
"""Load the entity ruler from a file. Expects a file containing
newline-delimited JSON (JSONL) with one entry per line.
path (str / Path): The JSONL file to load.
RETURNS (EntityRuler): The loaded entity ruler.
DOCS: https://spacy.io/api/entityruler#from_disk
"""
path = ensure_path(path)
self.clear()
depr_patterns_path = path.with_suffix(".jsonl")
if depr_patterns_path.is_file():
patterns = srsly.read_jsonl(depr_patterns_path)
self.add_patterns(patterns)
else:
cfg = {}
deserializers_patterns = {
"patterns": lambda p: self.add_patterns(
srsly.read_jsonl(p.with_suffix(".jsonl"))
)
}
deserializers_cfg = {"cfg": lambda p: cfg.update(srsly.read_json(p))}
from_disk(path, deserializers_cfg, {})
self.overwrite = cfg.get("overwrite", False)
self.phrase_matcher_attr = cfg.get("phrase_matcher_attr")
self.ent_id_sep = cfg.get("ent_id_sep", DEFAULT_ENT_ID_SEP)
self.phrase_matcher = PhraseMatcher(
self.nlp.vocab, attr=self.phrase_matcher_attr
)
from_disk(path, deserializers_patterns, {})
return self
def to_disk(
self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList()
) -> None:
"""Save the entity ruler patterns to a directory. The patterns will be
saved as newline-delimited JSON (JSONL).
path (str / Path): The JSONL file to save.
DOCS: https://spacy.io/api/entityruler#to_disk
"""
path = ensure_path(path)
cfg = {
"overwrite": self.overwrite,
"phrase_matcher_attr": self.phrase_matcher_attr,
"ent_id_sep": self.ent_id_sep,
}
serializers = {
"patterns": lambda p: srsly.write_jsonl(
p.with_suffix(".jsonl"), self.patterns
),
"cfg": lambda p: srsly.write_json(p, cfg),
}
if path.suffix == ".jsonl": # user wants to save only JSONL
srsly.write_jsonl(path, self.patterns)
else:
to_disk(path, serializers, {})