spaCy/spacy/pipeline/spancat_exclusive.py
Lj Miranda 29f156aa1a
Update documentation
Update grammar and usage

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
2022-11-29 11:06:35 +08:00

303 lines
11 KiB
Python

from typing import Callable, Dict, Iterable, List, Optional, Tuple, cast
from dataclasses import dataclass
import numpy
from thinc.api import Config, Model
from thinc.types import Floats2d, Ints2d, Ragged
from ..language import Language
from ..tokens import Doc, Span, SpanGroup
from ..training import Example
from ..vocab import Vocab
from .spancat import spancat_score, Suggester
from .spancat import SpanCategorizer
spancat_exclusive_default_config = """
[model]
@architectures = "spacy.SpanCategorizer.v1"
scorer = {"@layers": "Softmax.v2"}
[model.reducer]
@layers = spacy.mean_max_reducer.v1
hidden_size = 128
[model.tok2vec]
@architectures = "spacy.Tok2Vec.v2"
[model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v1"
width = 96
rows = [5000, 2000, 1000, 1000]
attrs = ["ORTH", "PREFIX", "SUFFIX", "SHAPE"]
include_static_vectors = false
[model.tok2vec.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = ${model.tok2vec.embed.width}
window_size = 1
maxout_pieces = 3
depth = 4
"""
DEFAULT_SPANCAT_MODEL = Config().from_str(spancat_exclusive_default_config)["model"]
@Language.factory(
"spancat_exclusive",
assigns=["doc.spans"],
default_config={
"spans_key": "sc",
"model": DEFAULT_SPANCAT_MODEL,
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
},
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
)
def make_spancat(
nlp: Language,
name: str,
suggester: Suggester,
model: Model[Tuple[List[Doc], Ragged], Floats2d],
spans_key: str,
scorer: Optional[Callable],
negative_weight: float = 1.0,
allow_overlap: bool = True,
) -> "Exclusive_SpanCategorizer":
"""Create a SpanCategorizerExclusive component. The span categorizer consists of two
parts: a suggester function that proposes candidate spans, and a labeler
model that predicts a single label for each span.
suggester (Callable[[Iterable[Doc], Optional[Ops]], Ragged]): A function that suggests spans.
Spans are returned as a ragged array with two integer columns, for the
start and end positions.
model (Model[Tuple[List[Doc], Ragged], Floats2d]): A model instance that
is given a list of documents and (start, end) indices representing
candidate span offsets. The model predicts a probability for each category
for each span.
spans_key (str): Key of the doc.spans dict to save the spans under. During
initialization and training, the component will look for spans on the
reference document under the same key.
scorer (Optional[Callable]): The scoring method. Defaults to
Scorer.score_spans for the Doc.spans[spans_key] with overlapping
spans allowed.
negative_weight (float): Multiplier for the loss terms.
Can be used to downweight the negative samples if there are too many.
allow_overlap (bool): If True the data is assumed to
contain overlapping spans.
"""
return Exclusive_SpanCategorizer(
nlp.vocab,
suggester=suggester,
model=model,
spans_key=spans_key,
negative_weight=negative_weight,
name=name,
scorer=scorer,
allow_overlap=allow_overlap,
)
@dataclass
class Ranges:
"""
Helper class to avoid storing overlapping spans.
"""
def __init__(self):
self.ranges = set()
def add(self, i, j):
for e in range(i, j):
self.ranges.add(e)
def __contains__(self, rang):
i, j = rang
for e in range(i, j):
if e in self.ranges:
return True
return False
class Exclusive_SpanCategorizer(SpanCategorizer):
"""Pipeline component to label non-overlapping spans of text.
DOCS: https://spacy.io/api/spancatcategorizer
"""
def __init__(
self,
vocab: Vocab,
model: Model[Tuple[List[Doc], Ragged], Floats2d],
suggester: Suggester,
name: str = "spancat_exclusive",
*,
spans_key: str = "spans",
negative_weight: float = 1.0,
allow_overlap: bool = True,
scorer: Optional[Callable] = spancat_score,
) -> None:
"""Initialize the span categorizer.
vocab (Vocab): The shared vocabulary.
model (thinc.api.Model): The Thinc Model powering the pipeline component.
name (str): The component instance name, used to add entries to the
losses during training.
spans_key (str): Key of the Doc.spans dict to save the spans under.
During initialization and training, the component will look for
spans on the reference document under the same key. Defaults to
`"spans"`.
negative_weight (float): Multiplier for the loss terms.
Can be used to down weigh the negative samples if there are too many.
allow_overlap (bool): If True the data is assumed to
contain overlapping spans.
scorer (Optional[Callable]): The scoring method. Defaults to
Scorer.score_spans for the Doc.spans[spans_key] with overlapping
spans allowed.
DOCS: https://spacy.io/api/spancatcategorizer#init
"""
self.cfg = {
"labels": [],
"spans_key": spans_key,
"negative_weight": negative_weight,
"allow_overlap": allow_overlap,
}
self.vocab = vocab
self.suggester = suggester
self.model = model
self.name = name
self.scorer = scorer
@property
def label_map(self) -> Dict[str, int]:
"""RETURNS (Dict[str, int]): The label map."""
return {label: i for i, label in enumerate(self.labels)}
@property
def _negative_label(self) -> int:
"""RETURNS (int): Index of the negative label."""
return len(self.label_data)
@property
def _n_labels(self) -> int:
"""RETURNS (int): Number of labels including the negative label."""
return len(self.label_data) + 1
def set_annotations(self, docs: Iterable[Doc], indices_scores) -> None:
"""Modify a batch of Doc objects, using pre-computed scores.
docs (Iterable[Doc]): The documents to modify.
scores: The scores to set, produced by SpanCategorizerExclusive.predict.
DOCS: https://spacy.io/api/spancatcategorizer#set_annotations
"""
allow_overlap = cast(bool, self.cfg["allow_overlap"])
labels = self.labels
indices, scores = indices_scores
offset = 0
for i, doc in enumerate(docs):
indices_i = indices[i].dataXd
doc.spans[self.key] = self._make_span_group(
doc,
indices_i,
scores[offset : offset + indices.lengths[i]],
labels, # type: ignore[arg-type]
allow_overlap,
)
offset += indices.lengths[i]
def get_loss(
self, examples: Iterable[Example], spans_scores: Tuple[Ragged, Floats2d]
) -> Tuple[float, float]:
"""Find the loss and gradient of loss for the batch of documents and
their predicted scores.
examples (Iterable[Examples]): The batch of examples.
spans_scores: Scores representing the model's predictions.
RETURNS (Tuple[float, float]): The loss and the gradient.
DOCS: https://spacy.io/api/spancatcategorizer#get_loss
"""
spans, scores = spans_scores
spans = Ragged(
self.model.ops.to_numpy(spans.data), self.model.ops.to_numpy(spans.lengths)
)
target = numpy.zeros(scores.shape, dtype=scores.dtype)
# Set negative class as target initially for all samples.
negative_spans = numpy.ones((scores.shape[0]))
offset = 0
for i, eg in enumerate(examples):
# Map (start, end) offset of spans to the row in the
# d_scores array, so that we can adjust the gradient
# for predictions that were in the gold standard.
spans_index = {}
spans_i = spans[i].dataXd
for j in range(spans.lengths[i]):
start = int(spans_i[j, 0]) # type: ignore
end = int(spans_i[j, 1]) # type: ignore
spans_index[(start, end)] = offset + j
for gold_span in self._get_aligned_spans(eg):
key = (gold_span.start, gold_span.end)
if key in spans_index:
row = spans_index[key]
k = self.label_map[gold_span.label_]
target[row, k] = 1.0
# delete negative label target.
negative_spans[row] = 0.0
# The target is a flat array for all docs. Track the position
# we're at within the flat array.
offset += spans.lengths[i]
target = self.model.ops.asarray(target, dtype="f") # type: ignore
negative_samples = numpy.nonzero(negative_spans)[0]
target[negative_samples, self._negative_label] = 1.0 # type: ignore
d_scores = scores - target
neg_weight = cast(float, self.cfg["negative_weight"])
if neg_weight != 1.0:
d_scores[negative_samples] *= neg_weight
loss = float((d_scores**2).sum())
return loss, d_scores
def _make_span_group(
self,
doc: Doc,
indices: Ints2d,
scores: Floats2d,
labels: List[str],
allow_overlap: bool = True,
) -> SpanGroup:
scores = self.model.ops.to_numpy(scores)
indices = self.model.ops.to_numpy(indices)
predicted = scores.argmax(axis=1)
# Remove samples where the negative label is the argmax
positive = numpy.where(predicted != self._negative_label)[0]
predicted = predicted[positive]
indices = indices[positive]
# Sort spans according to argmax probability
if not allow_overlap:
# Get the probabilities
argmax_probs = numpy.take_along_axis(
scores[positive], numpy.expand_dims(predicted, 1), axis=1
)
argmax_probs = argmax_probs.squeeze()
sort_idx = (argmax_probs * -1).argsort()
predicted = predicted[sort_idx]
indices = indices[sort_idx]
seen = Ranges()
spans = SpanGroup(doc, name=self.key)
for i in range(len(predicted)):
label = predicted[i]
start = indices[i, 0]
end = indices[i, 1]
if not allow_overlap:
if (start, end) in seen:
continue
else:
seen.add(start, end)
spans.append(Span(doc, start, end, label=labels[label]))
return spans