spaCy/spacy/tests/doc/test_retokenize_split.py
2023-06-26 11:41:03 +02:00

297 lines
11 KiB
Python

import numpy
import pytest
from spacy.tokens import Doc, Token
from spacy.vocab import Vocab
@pytest.mark.issue(3540)
def test_issue3540(en_vocab):
words = ["I", "live", "in", "NewYork", "right", "now"]
tensor = numpy.asarray(
[[1.0, 1.1], [2.0, 2.1], [3.0, 3.1], [4.0, 4.1], [5.0, 5.1], [6.0, 6.1]],
dtype="f",
)
doc = Doc(en_vocab, words=words)
doc.tensor = tensor
gold_text = ["I", "live", "in", "NewYork", "right", "now"]
assert [token.text for token in doc] == gold_text
gold_lemma = ["I", "live", "in", "NewYork", "right", "now"]
for i, lemma in enumerate(gold_lemma):
doc[i].lemma_ = lemma
assert [token.lemma_ for token in doc] == gold_lemma
vectors_1 = [token.vector for token in doc]
assert len(vectors_1) == len(doc)
with doc.retokenize() as retokenizer:
heads = [(doc[3], 1), doc[2]]
attrs = {
"POS": ["PROPN", "PROPN"],
"LEMMA": ["New", "York"],
"DEP": ["pobj", "compound"],
}
retokenizer.split(doc[3], ["New", "York"], heads=heads, attrs=attrs)
gold_text = ["I", "live", "in", "New", "York", "right", "now"]
assert [token.text for token in doc] == gold_text
gold_lemma = ["I", "live", "in", "New", "York", "right", "now"]
assert [token.lemma_ for token in doc] == gold_lemma
vectors_2 = [token.vector for token in doc]
assert len(vectors_2) == len(doc)
assert vectors_1[0].tolist() == vectors_2[0].tolist()
assert vectors_1[1].tolist() == vectors_2[1].tolist()
assert vectors_1[2].tolist() == vectors_2[2].tolist()
assert vectors_1[4].tolist() == vectors_2[5].tolist()
assert vectors_1[5].tolist() == vectors_2[6].tolist()
def test_doc_retokenize_split(en_vocab):
words = ["LosAngeles", "start", "."]
heads = [1, 2, 2]
deps = ["dep"] * len(heads)
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
assert len(doc) == 3
assert len(str(doc)) == 19
assert doc[0].head.text == "start"
assert doc[1].head.text == "."
with doc.retokenize() as retokenizer:
retokenizer.split(
doc[0],
["Los", "Angeles"],
[(doc[0], 1), doc[1]],
attrs={
"tag": ["NNP"] * 2,
"lemma": ["Los", "Angeles"],
"ent_type": ["GPE"] * 2,
"morph": ["Number=Sing"] * 2,
},
)
assert len(doc) == 4
assert doc[0].text == "Los"
assert doc[0].head.text == "Angeles"
assert doc[0].idx == 0
assert str(doc[0].morph) == "Number=Sing"
assert doc[1].idx == 3
assert doc[1].text == "Angeles"
assert doc[1].head.text == "start"
assert str(doc[1].morph) == "Number=Sing"
assert doc[2].text == "start"
assert doc[2].head.text == "."
assert doc[3].text == "."
assert doc[3].head.text == "."
assert len(str(doc)) == 19
def test_doc_retokenize_split_lemmas(en_vocab):
# If lemmas are not set, leave unset
words = ["LosAngeles", "start", "."]
heads = [1, 2, 2]
deps = ["dep"] * len(heads)
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
with doc.retokenize() as retokenizer:
retokenizer.split(
doc[0],
["Los", "Angeles"],
[(doc[0], 1), doc[1]],
)
assert doc[0].lemma_ == ""
assert doc[1].lemma_ == ""
# If lemmas are set, use split orth as default lemma
words = ["LosAngeles", "start", "."]
heads = [1, 2, 2]
deps = ["dep"] * len(heads)
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
for t in doc:
t.lemma_ = "a"
with doc.retokenize() as retokenizer:
retokenizer.split(
doc[0],
["Los", "Angeles"],
[(doc[0], 1), doc[1]],
)
assert doc[0].lemma_ == "Los"
assert doc[1].lemma_ == "Angeles"
def test_doc_retokenize_split_dependencies(en_vocab):
doc = Doc(en_vocab, words=["LosAngeles", "start", "."])
dep1 = doc.vocab.strings.add("amod")
dep2 = doc.vocab.strings.add("subject")
with doc.retokenize() as retokenizer:
retokenizer.split(
doc[0],
["Los", "Angeles"],
[(doc[0], 1), doc[1]],
attrs={"dep": [dep1, dep2]},
)
assert doc[0].dep == dep1
assert doc[1].dep == dep2
def test_doc_retokenize_split_heads_error(en_vocab):
doc = Doc(en_vocab, words=["LosAngeles", "start", "."])
# Not enough heads
with pytest.raises(ValueError):
with doc.retokenize() as retokenizer:
retokenizer.split(doc[0], ["Los", "Angeles"], [doc[1]])
# Too many heads
with pytest.raises(ValueError):
with doc.retokenize() as retokenizer:
retokenizer.split(doc[0], ["Los", "Angeles"], [doc[1], doc[1], doc[1]])
def test_doc_retokenize_spans_entity_split_iob():
# Test entity IOB stays consistent after merging
words = ["abc", "d", "e"]
doc = Doc(Vocab(), words=words)
doc.ents = [(doc.vocab.strings.add("ent-abcd"), 0, 2)]
assert doc[0].ent_iob_ == "B"
assert doc[1].ent_iob_ == "I"
with doc.retokenize() as retokenizer:
retokenizer.split(doc[0], ["a", "b", "c"], [(doc[0], 1), (doc[0], 2), doc[1]])
assert doc[0].ent_iob_ == "B"
assert doc[1].ent_iob_ == "I"
assert doc[2].ent_iob_ == "I"
assert doc[3].ent_iob_ == "I"
def test_doc_retokenize_spans_sentence_update_after_split(en_vocab):
# fmt: off
words = ["StewartLee", "is", "a", "stand", "up", "comedian", ".", "He",
"lives", "in", "England", "and", "loves", "JoePasquale", "."]
heads = [1, 1, 3, 5, 3, 1, 1, 8, 8, 8, 9, 8, 8, 14, 12]
deps = ["nsubj", "ROOT", "det", "amod", "prt", "attr", "punct", "nsubj",
"ROOT", "prep", "pobj", "cc", "conj", "compound", "punct"]
# fmt: on
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
sent1, sent2 = list(doc.sents)
init_len = len(sent1)
init_len2 = len(sent2)
with doc.retokenize() as retokenizer:
retokenizer.split(
doc[0],
["Stewart", "Lee"],
[(doc[0], 1), doc[1]],
attrs={"dep": ["compound", "nsubj"]},
)
retokenizer.split(
doc[13],
["Joe", "Pasquale"],
[(doc[13], 1), doc[12]],
attrs={"dep": ["compound", "dobj"]},
)
sent1, sent2 = list(doc.sents)
assert len(sent1) == init_len + 1
assert len(sent2) == init_len2 + 1
def test_doc_retokenize_split_orths_mismatch(en_vocab):
"""Test that the regular retokenizer.split raises an error if the orths
don't match the original token text. There might still be a method that
allows this, but for the default use cases, merging and splitting should
always conform with spaCy's non-destructive tokenization policy. Otherwise,
it can lead to very confusing and unexpected results.
"""
doc = Doc(en_vocab, words=["LosAngeles", "start", "."])
with pytest.raises(ValueError):
with doc.retokenize() as retokenizer:
retokenizer.split(doc[0], ["L", "A"], [(doc[0], 0), (doc[0], 0)])
def test_doc_retokenize_split_extension_attrs(en_vocab):
Token.set_extension("a", default=False, force=True)
Token.set_extension("b", default="nothing", force=True)
doc = Doc(en_vocab, words=["LosAngeles", "start"])
with doc.retokenize() as retokenizer:
heads = [(doc[0], 1), doc[1]]
underscore = [{"a": True, "b": "1"}, {"b": "2"}]
attrs = {"lemma": ["los", "angeles"], "_": underscore}
retokenizer.split(doc[0], ["Los", "Angeles"], heads, attrs=attrs)
assert doc[0].lemma_ == "los"
assert doc[0]._.a is True
assert doc[0]._.b == "1"
assert doc[1].lemma_ == "angeles"
assert doc[1]._.a is False
assert doc[1]._.b == "2"
@pytest.mark.parametrize(
"underscore_attrs",
[
[{"a": "x"}, {}], # Overwriting getter without setter
[{"b": "x"}, {}], # Overwriting method
[{"c": "x"}, {}], # Overwriting nonexistent attribute
[{"a": "x"}, {"x": "x"}], # Combination
[{"a": "x", "x": "x"}, {"x": "x"}], # Combination
{"x": "x"}, # Not a list of dicts
],
)
def test_doc_retokenize_split_extension_attrs_invalid(en_vocab, underscore_attrs):
Token.set_extension("x", default=False, force=True)
Token.set_extension("a", getter=lambda x: x, force=True)
Token.set_extension("b", method=lambda x: x, force=True)
doc = Doc(en_vocab, words=["LosAngeles", "start"])
attrs = {"_": underscore_attrs}
with pytest.raises(ValueError):
with doc.retokenize() as retokenizer:
heads = [(doc[0], 1), doc[1]]
retokenizer.split(doc[0], ["Los", "Angeles"], heads, attrs=attrs)
def test_doc_retokenizer_split_lex_attrs(en_vocab):
"""Test that retokenization also sets attributes on the lexeme if they're
lexical attributes. For example, if a user sets IS_STOP, it should mean that
"all tokens with that lexeme" are marked as a stop word, so the ambiguity
here is acceptable. Also see #2390.
"""
assert not Doc(en_vocab, words=["Los"])[0].is_stop
assert not Doc(en_vocab, words=["Angeles"])[0].is_stop
doc = Doc(en_vocab, words=["LosAngeles", "start"])
assert not doc[0].is_stop
with doc.retokenize() as retokenizer:
attrs = {"is_stop": [True, False]}
heads = [(doc[0], 1), doc[1]]
retokenizer.split(doc[0], ["Los", "Angeles"], heads, attrs=attrs)
assert doc[0].is_stop
assert not doc[1].is_stop
def test_doc_retokenizer_realloc(en_vocab):
"""#4604: realloc correctly when new tokens outnumber original tokens"""
text = "Hyperglycemic adverse events following antipsychotic drug administration in the"
doc = Doc(en_vocab, words=text.split()[:-1])
with doc.retokenize() as retokenizer:
token = doc[0]
heads = [(token, 0)] * len(token)
retokenizer.split(doc[token.i], list(token.text), heads=heads)
doc = Doc(en_vocab, words=text.split())
with doc.retokenize() as retokenizer:
token = doc[0]
heads = [(token, 0)] * len(token)
retokenizer.split(doc[token.i], list(token.text), heads=heads)
def test_doc_retokenizer_split_norm(en_vocab):
"""#6060: reset norm in split"""
text = "The quick brownfoxjumpsoverthe lazy dog w/ white spots"
doc = Doc(en_vocab, words=text.split())
# Set custom norm on the w/ token.
doc[5].norm_ = "with"
# Retokenize to split out the words in the token at doc[2].
token = doc[2]
with doc.retokenize() as retokenizer:
retokenizer.split(
token,
["brown", "fox", "jumps", "over", "the"],
heads=[(token, idx) for idx in range(5)],
)
assert doc[9].text == "w/"
assert doc[9].norm_ == "with"
assert doc[5].text == "over"
assert doc[5].norm_ == "over"