spaCy/spacy/syntax/parser.pyx
2015-08-08 23:32:15 +02:00

140 lines
4.5 KiB
Cython

"""
MALT-style dependency parser
"""
from __future__ import unicode_literals
cimport cython
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
from libc.stdint cimport uint32_t, uint64_t
from libc.string cimport memset, memcpy
import random
import os.path
from os import path
import shutil
import json
import sys
from cymem.cymem cimport Pool, Address
from murmurhash.mrmr cimport hash64
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
from util import Config
from thinc.api cimport Example, ExampleC
from ..structs cimport TokenC
from ..tokens.doc cimport Doc
from ..strings cimport StringStore
from .transition_system import OracleError
from .transition_system cimport TransitionSystem, Transition
from ..gold cimport GoldParse
from . import _parse_features
from ._parse_features cimport CONTEXT_SIZE
from ._parse_features cimport fill_context
from .stateclass cimport StateClass
from .._ml cimport arg_max_if_true
DEBUG = False
def set_debug(val):
global DEBUG
DEBUG = val
def get_templates(name):
pf = _parse_features
if name == 'ner':
return pf.ner
elif name == 'debug':
return pf.unigrams
elif name.startswith('embed'):
return (pf.words, pf.tags, pf.labels)
else:
return (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s1_s0 + pf.s0_n1 + pf.n0_n1 + \
pf.tree_shape + pf.trigrams)
def ParserFactory(transition_system):
return lambda strings, dir_: Parser(strings, dir_, transition_system)
cdef class Parser:
def __init__(self, StringStore strings, model_dir, transition_system):
if not os.path.exists(model_dir):
print >> sys.stderr, "Warning: No model found at", model_dir
elif not os.path.isdir(model_dir):
print >> sys.stderr, "Warning: model path:", model_dir, "is not a directory"
else:
self.cfg = Config.read(model_dir, 'config')
self.moves = transition_system(strings, self.cfg.labels)
templates = get_templates(self.cfg.features)
self.model = Model(self.moves.n_moves, templates, model_dir)
def __call__(self, Doc tokens):
cdef StateClass stcls = StateClass.init(tokens.data, tokens.length)
self.moves.initialize_state(stcls)
cdef Example eg = Example(self.model.n_classes, CONTEXT_SIZE,
self.model.n_feats, self.model.n_feats)
with nogil:
self.parse(stcls, eg.c)
tokens.set_parse(stcls._sent)
def partial(self, Doc tokens, initial_actions):
cdef StateClass stcls = StateClass.init(tokens.data, tokens.length)
self.moves.initialize_state(stcls)
cdef object action_name
cdef Transition action
for action_name in initial_actions:
action = self.moves.lookup_transition(action_name)
action.do(stcls, action.label)
cdef Example eg = Example(self.model.n_classes, CONTEXT_SIZE,
self.model.n_feats, self.model.n_feats)
with nogil:
self.parse(stcls, eg.c)
tokens.set_parse(stcls._sent)
return stcls
cdef void parse(self, StateClass stcls, ExampleC eg) nogil:
while not stcls.is_final():
memset(eg.scores, 0, eg.nr_class * sizeof(weight_t))
self.moves.set_valid(eg.is_valid, stcls)
fill_context(eg.atoms, stcls)
self.model.set_scores(eg.scores, eg.atoms)
eg.guess = arg_max_if_true(eg.scores, eg.is_valid, self.model.n_classes)
self.moves.c[eg.guess].do(stcls, self.moves.c[eg.guess].label)
self.moves.finalize_state(stcls)
def train(self, Doc tokens, GoldParse gold):
self.moves.preprocess_gold(gold)
cdef StateClass stcls = StateClass.init(tokens.data, tokens.length)
self.moves.initialize_state(stcls)
cdef Example eg = Example(self.model.n_classes, CONTEXT_SIZE,
self.model.n_feats, self.model.n_feats)
cdef weight_t loss = 0
words = [w.orth_ for w in tokens]
cdef Transition G
while not stcls.is_final():
memset(eg.c.scores, 0, eg.c.nr_class * sizeof(weight_t))
self.moves.set_costs(eg.c.is_valid, eg.c.costs, stcls, gold)
fill_context(eg.c.atoms, stcls)
self.model.train(eg)
G = self.moves.c[eg.c.guess]
self.moves.c[eg.c.guess].do(stcls, self.moves.c[eg.c.guess].label)
loss += eg.c.loss
return loss