mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 15:37:29 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			241 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			241 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pytest
 | |
| from thinc.api import Config
 | |
| 
 | |
| from spacy import util
 | |
| from spacy.lang.en import English
 | |
| from spacy.language import Language
 | |
| from spacy.pipeline.span_finder import span_finder_default_config
 | |
| from spacy.tokens import Doc
 | |
| from spacy.training import Example
 | |
| from spacy.util import fix_random_seed, make_tempdir, registry
 | |
| 
 | |
| SPANS_KEY = "pytest"
 | |
| TRAIN_DATA = [
 | |
|     ("Who is Shaka Khan?", {"spans": {SPANS_KEY: [(7, 17)]}}),
 | |
|     (
 | |
|         "I like London and Berlin.",
 | |
|         {"spans": {SPANS_KEY: [(7, 13), (18, 24)]}},
 | |
|     ),
 | |
| ]
 | |
| 
 | |
| TRAIN_DATA_OVERLAPPING = [
 | |
|     ("Who is Shaka Khan?", {"spans": {SPANS_KEY: [(7, 17)]}}),
 | |
|     (
 | |
|         "I like London and Berlin",
 | |
|         {"spans": {SPANS_KEY: [(7, 13), (18, 24), (7, 24)]}},
 | |
|     ),
 | |
|     ("", {"spans": {SPANS_KEY: []}}),
 | |
| ]
 | |
| 
 | |
| 
 | |
| def make_examples(nlp, data=TRAIN_DATA):
 | |
|     train_examples = []
 | |
|     for t in data:
 | |
|         eg = Example.from_dict(nlp.make_doc(t[0]), t[1])
 | |
|         train_examples.append(eg)
 | |
|     return train_examples
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "tokens_predicted, tokens_reference, reference_truths",
 | |
|     [
 | |
|         (
 | |
|             ["Mon", ".", "-", "June", "16"],
 | |
|             ["Mon.", "-", "June", "16"],
 | |
|             [(0, 0), (0, 0), (0, 0), (1, 1), (0, 0)],
 | |
|         ),
 | |
|         (
 | |
|             ["Mon.", "-", "J", "une", "16"],
 | |
|             ["Mon.", "-", "June", "16"],
 | |
|             [(0, 0), (0, 0), (1, 0), (0, 1), (0, 0)],
 | |
|         ),
 | |
|         (
 | |
|             ["Mon", ".", "-", "June", "16"],
 | |
|             ["Mon.", "-", "June", "1", "6"],
 | |
|             [(0, 0), (0, 0), (0, 0), (1, 1), (0, 0)],
 | |
|         ),
 | |
|         (
 | |
|             ["Mon.", "-J", "un", "e 16"],
 | |
|             ["Mon.", "-", "June", "16"],
 | |
|             [(0, 0), (0, 0), (0, 0), (0, 0)],
 | |
|         ),
 | |
|         pytest.param(
 | |
|             ["Mon.-June", "16"],
 | |
|             ["Mon.", "-", "June", "16"],
 | |
|             [(0, 1), (0, 0)],
 | |
|         ),
 | |
|         pytest.param(
 | |
|             ["Mon.-", "June", "16"],
 | |
|             ["Mon.", "-", "J", "une", "16"],
 | |
|             [(0, 0), (1, 1), (0, 0)],
 | |
|         ),
 | |
|         pytest.param(
 | |
|             ["Mon.-", "June 16"],
 | |
|             ["Mon.", "-", "June", "16"],
 | |
|             [(0, 0), (1, 0)],
 | |
|         ),
 | |
|     ],
 | |
| )
 | |
| def test_loss_alignment_example(tokens_predicted, tokens_reference, reference_truths):
 | |
|     nlp = Language()
 | |
|     predicted = Doc(
 | |
|         nlp.vocab, words=tokens_predicted, spaces=[False] * len(tokens_predicted)
 | |
|     )
 | |
|     reference = Doc(
 | |
|         nlp.vocab, words=tokens_reference, spaces=[False] * len(tokens_reference)
 | |
|     )
 | |
|     example = Example(predicted, reference)
 | |
|     example.reference.spans[SPANS_KEY] = [example.reference.char_span(5, 9)]
 | |
|     span_finder = nlp.add_pipe("span_finder", config={"spans_key": SPANS_KEY})
 | |
|     nlp.initialize()
 | |
|     ops = span_finder.model.ops
 | |
|     if predicted.text != reference.text:
 | |
|         with pytest.raises(
 | |
|             ValueError, match="must match between reference and predicted"
 | |
|         ):
 | |
|             span_finder._get_aligned_truth_scores([example], ops)
 | |
|         return
 | |
|     truth_scores, masks = span_finder._get_aligned_truth_scores([example], ops)
 | |
|     assert len(truth_scores) == len(tokens_predicted)
 | |
|     ops.xp.testing.assert_array_equal(truth_scores, ops.xp.asarray(reference_truths))
 | |
| 
 | |
| 
 | |
| def test_span_finder_model():
 | |
|     nlp = Language()
 | |
| 
 | |
|     docs = [nlp("This is an example."), nlp("This is the second example.")]
 | |
|     docs[0].spans[SPANS_KEY] = [docs[0][3:4]]
 | |
|     docs[1].spans[SPANS_KEY] = [docs[1][3:5]]
 | |
| 
 | |
|     total_tokens = 0
 | |
|     for doc in docs:
 | |
|         total_tokens += len(doc)
 | |
| 
 | |
|     config = Config().from_str(span_finder_default_config).interpolate()
 | |
|     model = registry.resolve(config)["model"]
 | |
| 
 | |
|     model.initialize(X=docs)
 | |
|     predictions = model.predict(docs)
 | |
| 
 | |
|     assert len(predictions) == total_tokens
 | |
|     assert len(predictions[0]) == 2
 | |
| 
 | |
| 
 | |
| def test_span_finder_component():
 | |
|     nlp = Language()
 | |
| 
 | |
|     docs = [nlp("This is an example."), nlp("This is the second example.")]
 | |
|     docs[0].spans[SPANS_KEY] = [docs[0][3:4]]
 | |
|     docs[1].spans[SPANS_KEY] = [docs[1][3:5]]
 | |
| 
 | |
|     span_finder = nlp.add_pipe("span_finder", config={"spans_key": SPANS_KEY})
 | |
|     nlp.initialize()
 | |
|     docs = list(span_finder.pipe(docs))
 | |
| 
 | |
|     assert SPANS_KEY in docs[0].spans
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "min_length, max_length, span_count",
 | |
|     [(0, 0, 0), (None, None, 8), (2, None, 6), (None, 1, 2), (2, 3, 2)],
 | |
| )
 | |
| def test_set_annotations_span_lengths(min_length, max_length, span_count):
 | |
|     nlp = Language()
 | |
|     doc = nlp("Me and Jenny goes together like peas and carrots.")
 | |
|     if min_length == 0 and max_length == 0:
 | |
|         with pytest.raises(ValueError, match="Both 'min_length' and 'max_length'"):
 | |
|             span_finder = nlp.add_pipe(
 | |
|                 "span_finder",
 | |
|                 config={
 | |
|                     "max_length": max_length,
 | |
|                     "min_length": min_length,
 | |
|                     "spans_key": SPANS_KEY,
 | |
|                 },
 | |
|             )
 | |
|         return
 | |
|     span_finder = nlp.add_pipe(
 | |
|         "span_finder",
 | |
|         config={
 | |
|             "max_length": max_length,
 | |
|             "min_length": min_length,
 | |
|             "spans_key": SPANS_KEY,
 | |
|         },
 | |
|     )
 | |
|     nlp.initialize()
 | |
|     # Starts    [Me, Jenny, peas]
 | |
|     # Ends      [Jenny, peas, carrots]
 | |
|     scores = [
 | |
|         (1, 0),
 | |
|         (0, 0),
 | |
|         (1, 1),
 | |
|         (0, 0),
 | |
|         (0, 0),
 | |
|         (0, 0),
 | |
|         (1, 1),
 | |
|         (0, 0),
 | |
|         (0, 1),
 | |
|         (0, 0),
 | |
|     ]
 | |
|     span_finder.set_annotations([doc], scores)
 | |
| 
 | |
|     assert doc.spans[SPANS_KEY]
 | |
|     assert len(doc.spans[SPANS_KEY]) == span_count
 | |
| 
 | |
|     # Assert below will fail when max_length is set to 0
 | |
|     if max_length is None:
 | |
|         max_length = float("inf")
 | |
|     if min_length is None:
 | |
|         min_length = 1
 | |
| 
 | |
|     assert all(min_length <= len(span) <= max_length for span in doc.spans[SPANS_KEY])
 | |
| 
 | |
| 
 | |
| def test_overfitting_IO():
 | |
|     # Simple test to try and quickly overfit the span_finder component - ensuring the ML models work correctly
 | |
|     fix_random_seed(0)
 | |
|     nlp = English()
 | |
|     span_finder = nlp.add_pipe("span_finder", config={"spans_key": SPANS_KEY})
 | |
|     train_examples = make_examples(nlp)
 | |
|     optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | |
|     assert span_finder.model.get_dim("nO") == 2
 | |
| 
 | |
|     for i in range(50):
 | |
|         losses = {}
 | |
|         nlp.update(train_examples, sgd=optimizer, losses=losses)
 | |
|     assert losses["span_finder"] < 0.001
 | |
| 
 | |
|     # test the trained model
 | |
|     test_text = "I like London and Berlin"
 | |
|     doc = nlp(test_text)
 | |
|     spans = doc.spans[SPANS_KEY]
 | |
|     assert len(spans) == 3
 | |
|     assert set([span.text for span in spans]) == {
 | |
|         "London",
 | |
|         "Berlin",
 | |
|         "London and Berlin",
 | |
|     }
 | |
| 
 | |
|     # Also test the results are still the same after IO
 | |
|     with make_tempdir() as tmp_dir:
 | |
|         nlp.to_disk(tmp_dir)
 | |
|         nlp2 = util.load_model_from_path(tmp_dir)
 | |
|         doc2 = nlp2(test_text)
 | |
|         spans2 = doc2.spans[SPANS_KEY]
 | |
|         assert len(spans2) == 3
 | |
|         assert set([span.text for span in spans2]) == {
 | |
|             "London",
 | |
|             "Berlin",
 | |
|             "London and Berlin",
 | |
|         }
 | |
| 
 | |
|     # Test scoring
 | |
|     scores = nlp.evaluate(train_examples)
 | |
|     assert f"spans_{SPANS_KEY}_f" in scores
 | |
|     # It's not perfect 1.0 F1 because it's designed to overgenerate for now.
 | |
|     assert scores[f"spans_{SPANS_KEY}_p"] == 0.75
 | |
|     assert scores[f"spans_{SPANS_KEY}_r"] == 1.0
 | |
| 
 | |
|     # also test that the spancat works for just a single entity in a sentence
 | |
|     doc = nlp("London")
 | |
|     assert len(doc.spans[SPANS_KEY]) == 1
 |