mirror of
https://github.com/explosion/spaCy.git
synced 2025-04-25 03:13:41 +03:00
471 lines
17 KiB
Python
471 lines
17 KiB
Python
from dataclasses import dataclass
|
|
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, cast
|
|
|
|
import numpy
|
|
from thinc.api import Config, Model, Ops, Optimizer
|
|
from thinc.api import set_dropout_rate
|
|
from thinc.types import Floats2d, Ints2d, Ragged
|
|
|
|
from ..compat import Protocol, runtime_checkable
|
|
from ..errors import Errors
|
|
from ..language import Language
|
|
from ..tokens import Doc, Span, SpanGroup
|
|
from ..training import Example, validate_examples
|
|
from ..vocab import Vocab
|
|
from .spancat import spancat_score, build_ngram_suggester
|
|
from .trainable_pipe import TrainablePipe
|
|
|
|
|
|
spancat_exclusive_default_config = """
|
|
[model]
|
|
@architectures = "spacy.SpanCategorizer.v1"
|
|
scorer = {"@layers": "Softmax.v2"}
|
|
|
|
[model.reducer]
|
|
@layers = spacy.mean_max_reducer.v1
|
|
hidden_size = 128
|
|
|
|
[model.tok2vec]
|
|
@architectures = "spacy.Tok2Vec.v1"
|
|
[model.tok2vec.embed]
|
|
@architectures = "spacy.MultiHashEmbed.v1"
|
|
width = 96
|
|
rows = [5000, 2000, 1000, 1000]
|
|
attrs = ["ORTH", "PREFIX", "SUFFIX", "SHAPE"]
|
|
include_static_vectors = false
|
|
|
|
[model.tok2vec.encode]
|
|
@architectures = "spacy.MaxoutWindowEncoder.v1"
|
|
width = ${model.tok2vec.embed.width}
|
|
window_size = 1
|
|
maxout_pieces = 3
|
|
depth = 4
|
|
"""
|
|
|
|
DEFAULT_SPANCAT_MODEL = Config().from_str(spancat_exclusive_default_config)["model"]
|
|
|
|
|
|
@runtime_checkable
|
|
class Suggester(Protocol):
|
|
def __call__(self, docs: Iterable[Doc], *, ops: Optional[Ops] = None) -> Ragged:
|
|
...
|
|
|
|
|
|
@Language.factory(
|
|
"spancat_exclusive",
|
|
assigns=["doc.spans"],
|
|
default_config={
|
|
"spans_key": "sc",
|
|
"model": DEFAULT_SPANCAT_MODEL,
|
|
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
|
|
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
|
|
},
|
|
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
|
|
)
|
|
def make_spancat(
|
|
nlp: Language,
|
|
name: str,
|
|
suggester: Suggester,
|
|
model: Model[Tuple[List[Doc], Ragged], Floats2d],
|
|
spans_key: str,
|
|
scorer: Optional[Callable],
|
|
negative_weight: float = 1.0,
|
|
allow_overlap: bool = True,
|
|
) -> "SpanCategorizerExclusive":
|
|
"""Create a SpanCategorizerExclusive component. The span categorizer consists of two
|
|
parts: a suggester function that proposes candidate spans, and a labeller
|
|
model that predicts a single label for each span.
|
|
|
|
suggester (Callable[[Iterable[Doc], Optional[Ops]], Ragged]): A function that suggests spans.
|
|
Spans are returned as a ragged array with two integer columns, for the
|
|
start and end positions.
|
|
model (Model[Tuple[List[Doc], Ragged], Floats2d]): A model instance that
|
|
is given a list of documents and (start, end) indices representing
|
|
candidate span offsets. The model predicts a probability for each category
|
|
for each span.
|
|
spans_key (str): Key of the doc.spans dict to save the spans under. During
|
|
initialization and training, the component will look for spans on the
|
|
reference document under the same key.
|
|
negative_weight (float): Multiplier for the loss terms.
|
|
Can be used to down weigh the negative samples if there are too many.
|
|
allow_overlap (bool): If True the data is assumed to
|
|
contain overlapping spans.
|
|
"""
|
|
return SpanCategorizerExclusive(
|
|
nlp.vocab,
|
|
suggester=suggester,
|
|
model=model,
|
|
spans_key=spans_key,
|
|
negative_weight=negative_weight,
|
|
name=name,
|
|
scorer=scorer,
|
|
allow_overlap=allow_overlap,
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class Ranges:
|
|
"""
|
|
Helper class help avoid storing overlapping span.
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.ranges = set()
|
|
|
|
def add(self, i, j):
|
|
for e in range(i, j):
|
|
self.ranges.add(e)
|
|
|
|
def __contains__(self, rang):
|
|
i, j = rang
|
|
for e in range(i, j):
|
|
if e in self.ranges:
|
|
return True
|
|
return False
|
|
|
|
|
|
class SpanCategorizerExclusive(TrainablePipe):
|
|
"""Pipeline component to label spans of text.
|
|
|
|
DOCS: https://spacy.io/api/spancategorizerexclusive
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
vocab: Vocab,
|
|
model: Model[Tuple[List[Doc], Ragged], Floats2d],
|
|
suggester: Suggester,
|
|
name: str = "spancat_exclusive",
|
|
*,
|
|
spans_key: str = "spans",
|
|
negative_weight: float = 1.0,
|
|
allow_overlap: bool = True,
|
|
scorer: Optional[Callable] = spancat_score,
|
|
) -> None:
|
|
"""Initialize the span categorizer.
|
|
vocab (Vocab): The shared vocabulary.
|
|
model (thinc.api.Model): The Thinc Model powering the pipeline component.
|
|
name (str): The component instance name, used to add entries to the
|
|
losses during training.
|
|
spans_key (str): Key of the Doc.spans dict to save the spans under.
|
|
During initialization and training, the component will look for
|
|
spans on the reference document under the same key. Defaults to
|
|
`"spans"`.
|
|
negative_weight (float): Multiplier for the loss terms.
|
|
Can be used to down weigh the negative samples if there are too many.
|
|
allow_overlap (bool): If True the data is assumed to
|
|
contain overlapping spans.
|
|
scorer (Optional[Callable]): The scoring method. Defaults to
|
|
Scorer.score_spans for the Doc.spans[spans_key] with overlapping
|
|
spans allowed.
|
|
|
|
DOCS: https://spacy.io/api/spancategorizerexclusive#init
|
|
"""
|
|
self.cfg = {
|
|
"labels": [],
|
|
"spans_key": spans_key,
|
|
"negative_weight": negative_weight,
|
|
"allow_overlap": allow_overlap,
|
|
}
|
|
self.vocab = vocab
|
|
self.suggester = suggester
|
|
self.model = model
|
|
self.name = name
|
|
self.scorer = scorer
|
|
|
|
@property
|
|
def key(self) -> str:
|
|
"""Key of the doc.spans dict to save the spans under. During
|
|
initialization and training, the component will look for spans on the
|
|
reference document under the same key.
|
|
"""
|
|
return str(self.cfg["spans_key"])
|
|
|
|
def add_label(self, label: str) -> int:
|
|
"""Add a new label to the pipe.
|
|
|
|
label (str): The label to add.
|
|
RETURNS (int): 0 if label is already present, otherwise 1.
|
|
|
|
DOCS: https://spacy.io/api/spancategorizerexclusive#add_label
|
|
"""
|
|
if not isinstance(label, str):
|
|
raise ValueError(Errors.E187)
|
|
if label in self.labels:
|
|
return 0
|
|
self._allow_extra_label()
|
|
self.cfg["labels"].append(label) # type: ignore
|
|
self.vocab.strings.add(label)
|
|
return 1
|
|
|
|
@property
|
|
def labels(self) -> Tuple[str]:
|
|
"""RETURNS (Tuple[str]): The labels currently added to the component.
|
|
|
|
DOCS: https://spacy.io/api/spancategorizerexclusive#labels
|
|
"""
|
|
return tuple(self.cfg["labels"]) # type: ignore
|
|
|
|
@property
|
|
def label_data(self) -> List[str]:
|
|
"""RETURNS (List[str]): Information about the component's labels.
|
|
|
|
DOCS: https://spacy.io/api/spancategorizerexclusive#label_data
|
|
"""
|
|
return list(self.labels)
|
|
|
|
@property
|
|
def _negative_label(self):
|
|
"""
|
|
Index of the negative label.
|
|
"""
|
|
return len(self.label_data)
|
|
|
|
@property
|
|
def _n_labels(self):
|
|
"""
|
|
Number of labels including the negative label.
|
|
"""
|
|
return len(self.label_data) + 1
|
|
|
|
def predict(self, docs: Iterable[Doc]):
|
|
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
|
|
|
docs (Iterable[Doc]): The documents to predict.
|
|
RETURNS: The models prediction for each document.
|
|
|
|
DOCS: https://spacy.io/api/spancategorizerexclusive#predict
|
|
"""
|
|
indices = self.suggester(docs, ops=self.model.ops)
|
|
scores = self.model.predict((docs, indices)) # type: ignore
|
|
return indices, scores
|
|
|
|
def set_candidates(
|
|
self, docs: Iterable[Doc], *, candidates_key: str = "candidates"
|
|
) -> None:
|
|
"""Use the spancat suggester to add a list of span candidates to a
|
|
list of docs. Intended to be used for debugging purposes.
|
|
|
|
docs (Iterable[Doc]): The documents to modify.
|
|
candidates_key (str): Key of the Doc.spans dict to save the
|
|
candidate spans under.
|
|
|
|
DOCS: https://spacy.io/api/spancategorizerexclusive#set_candidates
|
|
"""
|
|
suggester_output = self.suggester(docs, ops=self.model.ops)
|
|
|
|
for candidates, doc in zip(suggester_output, docs): # type: ignore
|
|
doc.spans[candidates_key] = []
|
|
for index in candidates.dataXd:
|
|
doc.spans[candidates_key].append(doc[index[0] : index[1]])
|
|
|
|
def set_annotations(self, docs: Iterable[Doc], indices_scores) -> None:
|
|
"""Modify a batch of Doc objects, using pre-computed scores.
|
|
|
|
docs (Iterable[Doc]): The documents to modify.
|
|
scores: The scores to set, produced by SpanCategorizerExclusive.predict.
|
|
|
|
DOCS: https://spacy.io/api/spancategorizerexclusive#set_annotations
|
|
"""
|
|
allow_overlap = self.cfg["allow_overlap"]
|
|
labels = self.labels
|
|
indices, scores = indices_scores
|
|
offset = 0
|
|
for i, doc in enumerate(docs):
|
|
indices_i = indices[i].dataXd
|
|
doc.spans[self.key] = self._make_span_group(
|
|
doc,
|
|
indices_i,
|
|
scores[offset : offset + indices.lengths[i]],
|
|
labels,
|
|
allow_overlap,
|
|
) # type: ignore[arg-type]
|
|
offset += indices.lengths[i]
|
|
|
|
def update(
|
|
self,
|
|
examples: Iterable[Example],
|
|
*,
|
|
drop: float = 0.0,
|
|
sgd: Optional[Optimizer] = None,
|
|
losses: Optional[Dict[str, float]] = None,
|
|
) -> Dict[str, float]:
|
|
"""Learn from a batch of documents and gold-standard information,
|
|
updating the pipe's model. Delegates to predict and get_loss.
|
|
examples (Iterable[Example]): A batch of Example objects.
|
|
|
|
drop (float): The dropout rate.
|
|
sgd (thinc.api.Optimizer): The optimizer.
|
|
losses (Dict[str, float]): Optional record of the loss during training.
|
|
Updated using the component name as the key.
|
|
RETURNS (Dict[str, float]): The updated losses dictionary.
|
|
|
|
DOCS: https://spacy.io/api/spancategorizerexclusive#update
|
|
"""
|
|
if losses is None:
|
|
losses = {}
|
|
losses.setdefault(self.name, 0.0)
|
|
validate_examples(examples, "SpanCategorizer.update")
|
|
self._validate_categories(examples)
|
|
if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples):
|
|
# Handle cases where there are no tokens in any docs.
|
|
return losses
|
|
docs = [eg.predicted for eg in examples]
|
|
spans = self.suggester(docs, ops=self.model.ops)
|
|
if spans.lengths.sum() == 0:
|
|
return losses
|
|
set_dropout_rate(self.model, drop)
|
|
scores, backprop_scores = self.model.begin_update((docs, spans))
|
|
loss, d_scores = self.get_loss(examples, (spans, scores))
|
|
backprop_scores(d_scores) # type: ignore
|
|
if sgd is not None:
|
|
self.finish_update(sgd)
|
|
losses[self.name] += loss
|
|
return losses
|
|
|
|
def get_loss(
|
|
self, examples: Iterable[Example], spans_scores: Tuple[Ragged, Floats2d]
|
|
) -> Tuple[float, float]:
|
|
"""Find the loss and gradient of loss for the batch of documents and
|
|
their predicted scores.
|
|
|
|
examples (Iterable[Examples]): The batch of examples.
|
|
spans_scores: Scores representing the model's predictions.
|
|
RETURNS (Tuple[float, float]): The loss and the gradient.
|
|
|
|
DOCS: https://spacy.io/api/spancategorizerexclusive#get_loss
|
|
"""
|
|
spans, scores = spans_scores
|
|
spans = Ragged(
|
|
self.model.ops.to_numpy(spans.data), self.model.ops.to_numpy(spans.lengths)
|
|
)
|
|
label_map = {label: i for i, label in enumerate(self.labels)}
|
|
target = numpy.zeros(scores.shape, dtype=scores.dtype)
|
|
# Set negative class as target initially for all samples.
|
|
negative_spans = numpy.ones((scores.shape[0]))
|
|
offset = 0
|
|
for i, eg in enumerate(examples):
|
|
# Map (start, end) offset of spans to the row in the
|
|
# d_scores array, so that we can adjust the gradient
|
|
# for predictions that were in the gold standard.
|
|
spans_index = {}
|
|
spans_i = spans[i].dataXd
|
|
for j in range(spans.lengths[i]):
|
|
start = int(spans_i[j, 0]) # type: ignore
|
|
end = int(spans_i[j, 1]) # type: ignore
|
|
spans_index[(start, end)] = offset + j
|
|
for gold_span in self._get_aligned_spans(eg):
|
|
key = (gold_span.start, gold_span.end)
|
|
if key in spans_index:
|
|
row = spans_index[key]
|
|
k = label_map[gold_span.label_]
|
|
target[row, k] = 1.0
|
|
# delete negative label target.
|
|
negative_spans[row] = 0.0
|
|
# The target is a flat array for all docs. Track the position
|
|
# we're at within the flat array.
|
|
offset += spans.lengths[i]
|
|
target = self.model.ops.asarray(target, dtype="f") # type: ignore
|
|
negative_samples = numpy.nonzero(negative_spans)[0]
|
|
target[negative_samples, self._negative_label] = 1.0
|
|
d_scores = scores - target
|
|
neg_weight = self.cfg["negative_weight"]
|
|
d_scores[negative_samples] *= neg_weight
|
|
loss = float((d_scores**2).sum())
|
|
return loss, d_scores
|
|
|
|
def initialize(
|
|
self,
|
|
get_examples: Callable[[], Iterable[Example]],
|
|
*,
|
|
nlp: Optional[Language] = None,
|
|
labels: Optional[List[str]] = None,
|
|
) -> None:
|
|
"""Initialize the pipe for training, using a representative set
|
|
of data examples.
|
|
|
|
get_examples (Callable[[], Iterable[Example]]): Function that
|
|
returns a representative sample of gold-standard Example objects.
|
|
nlp (Optional[Language]): The current nlp object the component is part of.
|
|
labels (Optional[List[str]]): The labels to add to the component, typically generated by the
|
|
`init labels` command. If no labels are provided, the get_examples
|
|
callback is used to extract the labels from the data.
|
|
|
|
DOCS: https://spacy.io/api/spancategorizerexclusive#initialize
|
|
"""
|
|
subbatch: List[Example] = []
|
|
if labels is not None:
|
|
for label in labels:
|
|
self.add_label(label)
|
|
for eg in get_examples():
|
|
if labels is None:
|
|
for span in eg.reference.spans.get(self.key, []):
|
|
self.add_label(span.label_)
|
|
if len(subbatch) < 10:
|
|
subbatch.append(eg)
|
|
self._require_labels()
|
|
if subbatch:
|
|
docs = [eg.x for eg in subbatch]
|
|
spans = build_ngram_suggester(sizes=[1])(docs)
|
|
# + 1 for the "no-label" category
|
|
Y = self.model.ops.alloc2f(spans.dataXd.shape[0], self._n_labels)
|
|
self.model.initialize(X=(docs, spans), Y=Y)
|
|
else:
|
|
# FIXME: Ideally we want to raise an error to avoid implicitly
|
|
# raising it when initializing without examples. For now, we'll just
|
|
# copy over what `spancat` did.
|
|
self.model.initialize()
|
|
|
|
def _validate_categories(self, examples: Iterable[Example]):
|
|
# TODO
|
|
pass
|
|
|
|
def _get_aligned_spans(self, eg: Example):
|
|
return eg.get_aligned_spans_y2x(
|
|
eg.reference.spans.get(self.key, []), allow_overlap=True
|
|
)
|
|
|
|
def _make_span_group(
|
|
self,
|
|
doc: Doc,
|
|
indices: Ints2d,
|
|
scores: Floats2d,
|
|
labels: List[str],
|
|
allow_overlap: bool = True,
|
|
) -> SpanGroup:
|
|
scores = self.model.ops.to_numpy(scores)
|
|
indices = self.model.ops.to_numpy(indices)
|
|
predicted = scores.argmax(axis=1)
|
|
|
|
# Remove samples where the negative label is the argmax
|
|
positive = numpy.where(predicted != self._negative_label)
|
|
predicted = predicted[positive[0]]
|
|
indices = indices[positive[0]]
|
|
|
|
# Sort spans according to argmax probability
|
|
if not allow_overlap:
|
|
argmax_probs = numpy.take_along_axis(
|
|
scores[positive[0]], numpy.expand_dims(predicted, 1), axis=1
|
|
)
|
|
argmax_probs = argmax_probs.squeeze()
|
|
sort_idx = (argmax_probs * -1).argsort()
|
|
predicted = predicted[sort_idx]
|
|
indices = indices[sort_idx]
|
|
|
|
seen = Ranges()
|
|
spans = SpanGroup(doc, name=self.key)
|
|
for i in range(len(predicted)):
|
|
label = predicted[i]
|
|
start = indices[i, 0]
|
|
end = indices[i, 1]
|
|
|
|
if not allow_overlap:
|
|
if (start, end) in seen:
|
|
continue
|
|
else:
|
|
seen.add(start, end)
|
|
|
|
spans.append(Span(doc, start, end, label=labels[label]))
|
|
|
|
return spans
|