mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			140 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			140 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from __future__ import division, unicode_literals, print_function
 | 
						|
import spacy
 | 
						|
 | 
						|
import plac
 | 
						|
from pathlib import Path
 | 
						|
import ujson as json
 | 
						|
import numpy
 | 
						|
from keras.utils.np_utils import to_categorical
 | 
						|
 | 
						|
from spacy_hook import get_embeddings, get_word_ids
 | 
						|
from spacy_hook import create_similarity_pipeline
 | 
						|
 | 
						|
from keras_decomposable_attention import build_model
 | 
						|
 | 
						|
try:
 | 
						|
    import cPickle as pickle
 | 
						|
except ImportError:
 | 
						|
    import pickle
 | 
						|
 | 
						|
 | 
						|
def train(train_loc, dev_loc, shape, settings):
 | 
						|
    train_texts1, train_texts2, train_labels = read_snli(train_loc)
 | 
						|
    dev_texts1, dev_texts2, dev_labels = read_snli(dev_loc)
 | 
						|
 | 
						|
    print("Loading spaCy")
 | 
						|
    nlp = spacy.load('en')
 | 
						|
    assert nlp.path is not None
 | 
						|
    print("Compiling network")
 | 
						|
    model = build_model(get_embeddings(nlp.vocab), shape, settings)
 | 
						|
    print("Processing texts...")
 | 
						|
    Xs = []
 | 
						|
    for texts in (train_texts1, train_texts2, dev_texts1, dev_texts2):
 | 
						|
        Xs.append(get_word_ids(list(nlp.pipe(texts, n_threads=20, batch_size=20000)),
 | 
						|
                         max_length=shape[0],
 | 
						|
                         rnn_encode=settings['gru_encode'],
 | 
						|
                         tree_truncate=settings['tree_truncate']))
 | 
						|
    train_X1, train_X2, dev_X1, dev_X2 = Xs
 | 
						|
    print(settings)
 | 
						|
    model.fit(
 | 
						|
        [train_X1, train_X2],
 | 
						|
        train_labels,
 | 
						|
        validation_data=([dev_X1, dev_X2], dev_labels),
 | 
						|
        nb_epoch=settings['nr_epoch'],
 | 
						|
        batch_size=settings['batch_size'])
 | 
						|
    if not (nlp.path / 'similarity').exists():
 | 
						|
        (nlp.path / 'similarity').mkdir()
 | 
						|
    print("Saving to", nlp.path / 'similarity')
 | 
						|
    weights = model.get_weights()
 | 
						|
    with (nlp.path / 'similarity' / 'model').open('wb') as file_:
 | 
						|
        pickle.dump(weights[1:], file_)
 | 
						|
    with (nlp.path / 'similarity' / 'config.json').open('wb') as file_:
 | 
						|
        file_.write(model.to_json())
 | 
						|
 | 
						|
 | 
						|
def evaluate(dev_loc):
 | 
						|
    dev_texts1, dev_texts2, dev_labels = read_snli(dev_loc)
 | 
						|
    nlp = spacy.load('en',
 | 
						|
            create_pipeline=create_similarity_pipeline)
 | 
						|
    total = 0.
 | 
						|
    correct = 0.
 | 
						|
    for text1, text2, label in zip(dev_texts1, dev_texts2, dev_labels):
 | 
						|
        doc1 = nlp(text1)
 | 
						|
        doc2 = nlp(text2)
 | 
						|
        sim = doc1.similarity(doc2)
 | 
						|
        if sim.argmax() == label.argmax():
 | 
						|
            correct += 1
 | 
						|
        total += 1
 | 
						|
    return correct, total
 | 
						|
 | 
						|
 | 
						|
def demo():
 | 
						|
    nlp = spacy.load('en',
 | 
						|
            create_pipeline=create_similarity_pipeline)
 | 
						|
    doc1 = nlp(u'What were the best crime fiction books in 2016?')
 | 
						|
    doc2 = nlp(
 | 
						|
        u'What should I read that was published last year? I like crime stories.')
 | 
						|
    print(doc1)
 | 
						|
    print(doc2)
 | 
						|
    print("Similarity", doc1.similarity(doc2))
 | 
						|
 | 
						|
 | 
						|
LABELS = {'entailment': 0, 'contradiction': 1, 'neutral': 2}
 | 
						|
def read_snli(path):
 | 
						|
    texts1 = []
 | 
						|
    texts2 = []
 | 
						|
    labels = []
 | 
						|
    with path.open() as file_:
 | 
						|
        for line in file_:
 | 
						|
            eg = json.loads(line)
 | 
						|
            label = eg['gold_label']
 | 
						|
            if label == '-':
 | 
						|
                continue
 | 
						|
            texts1.append(eg['sentence1'])
 | 
						|
            texts2.append(eg['sentence2'])
 | 
						|
            labels.append(LABELS[label])
 | 
						|
    return texts1, texts2, to_categorical(numpy.asarray(labels, dtype='int32'))
 | 
						|
 | 
						|
 | 
						|
@plac.annotations(
 | 
						|
    mode=("Mode to execute", "positional", None, str, ["train", "evaluate", "demo"]),
 | 
						|
    train_loc=("Path to training data", "positional", None, Path),
 | 
						|
    dev_loc=("Path to development data", "positional", None, Path),
 | 
						|
    max_length=("Length to truncate sentences", "option", "L", int),
 | 
						|
    nr_hidden=("Number of hidden units", "option", "H", int),
 | 
						|
    dropout=("Dropout level", "option", "d", float),
 | 
						|
    learn_rate=("Learning rate", "option", "e", float),
 | 
						|
    batch_size=("Batch size for neural network training", "option", "b", int),
 | 
						|
    nr_epoch=("Number of training epochs", "option", "i", int),
 | 
						|
    tree_truncate=("Truncate sentences by tree distance", "flag", "T", bool),
 | 
						|
    gru_encode=("Encode sentences with bidirectional GRU", "flag", "E", bool),
 | 
						|
)
 | 
						|
def main(mode, train_loc, dev_loc,
 | 
						|
        tree_truncate=False,
 | 
						|
        gru_encode=False,
 | 
						|
        max_length=100,
 | 
						|
        nr_hidden=100,
 | 
						|
        dropout=0.2,
 | 
						|
        learn_rate=0.001,
 | 
						|
        batch_size=100,
 | 
						|
        nr_epoch=5):
 | 
						|
    shape = (max_length, nr_hidden, 3)
 | 
						|
    settings = {
 | 
						|
        'lr': learn_rate,
 | 
						|
        'dropout': dropout,
 | 
						|
        'batch_size': batch_size,
 | 
						|
        'nr_epoch': nr_epoch,
 | 
						|
        'tree_truncate': tree_truncate,
 | 
						|
        'gru_encode': gru_encode
 | 
						|
    }
 | 
						|
    if mode == 'train':
 | 
						|
        train(train_loc, dev_loc, shape, settings)
 | 
						|
    elif mode == 'evaluate':
 | 
						|
        correct, total = evaluate(dev_loc)
 | 
						|
        print(correct, '/', total, correct / total)
 | 
						|
    else:
 | 
						|
        demo()
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    plac.call(main)
 |