spaCy/spacy/tests/lang/en/test_parser.py
Ines Montani 75f3234404
💫 Refactor test suite (#2568)
## Description

Related issues: #2379 (should be fixed by separating model tests)

* **total execution time down from > 300 seconds to under 60 seconds** 🎉
* removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure
* changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version)
* merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways)
* tidied up and rewrote existing tests wherever possible

### Todo

- [ ] move tests to `/tests` and adjust CI commands accordingly
- [x] move model test suite from internal repo to `spacy-models`
- [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~
- [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted
- [ ] update documentation on how to run tests


### Types of change
enhancement, tests

## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-24 23:38:44 +02:00

71 lines
3.0 KiB
Python

# coding: utf-8
from __future__ import unicode_literals
from ...util import get_doc
def test_en_parser_noun_chunks_standard(en_tokenizer):
text = "A base phrase should be recognized."
heads = [2, 1, 3, 2, 1, 0, -1]
tags = ['DT', 'JJ', 'NN', 'MD', 'VB', 'VBN', '.']
deps = ['det', 'amod', 'nsubjpass', 'aux', 'auxpass', 'ROOT', 'punct']
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], tags=tags, deps=deps, heads=heads)
chunks = list(doc.noun_chunks)
assert len(chunks) == 1
assert chunks[0].text_with_ws == "A base phrase "
def test_en_parser_noun_chunks_coordinated(en_tokenizer):
text = "A base phrase and a good phrase are often the same."
heads = [2, 1, 5, -1, 2, 1, -4, 0, -1, 1, -3, -4]
tags = ['DT', 'NN', 'NN', 'CC', 'DT', 'JJ', 'NN', 'VBP', 'RB', 'DT', 'JJ', '.']
deps = ['det', 'compound', 'nsubj', 'cc', 'det', 'amod', 'conj', 'ROOT', 'advmod', 'det', 'attr', 'punct']
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], tags=tags, deps=deps, heads=heads)
chunks = list(doc.noun_chunks)
assert len(chunks) == 2
assert chunks[0].text_with_ws == "A base phrase "
assert chunks[1].text_with_ws == "a good phrase "
def test_en_parser_noun_chunks_pp_chunks(en_tokenizer):
text = "A phrase with another phrase occurs."
heads = [1, 4, -1, 1, -2, 0, -1]
tags = ['DT', 'NN', 'IN', 'DT', 'NN', 'VBZ', '.']
deps = ['det', 'nsubj', 'prep', 'det', 'pobj', 'ROOT', 'punct']
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], tags=tags, deps=deps, heads=heads)
chunks = list(doc.noun_chunks)
assert len(chunks) == 2
assert chunks[0].text_with_ws == "A phrase "
assert chunks[1].text_with_ws == "another phrase "
def test_en_parser_noun_chunks_appositional_modifiers(en_tokenizer):
text = "Sam, my brother, arrived to the house."
heads = [5, -1, 1, -3, -4, 0, -1, 1, -2, -4]
tags = ['NNP', ',', 'PRP$', 'NN', ',', 'VBD', 'IN', 'DT', 'NN', '.']
deps = ['nsubj', 'punct', 'poss', 'appos', 'punct', 'ROOT', 'prep', 'det', 'pobj', 'punct']
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], tags=tags, deps=deps, heads=heads)
chunks = list(doc.noun_chunks)
assert len(chunks) == 3
assert chunks[0].text_with_ws == "Sam "
assert chunks[1].text_with_ws == "my brother "
assert chunks[2].text_with_ws == "the house "
def test_en_parser_noun_chunks_dative(en_tokenizer):
text = "She gave Bob a raise."
heads = [1, 0, -1, 1, -3, -4]
tags = ['PRP', 'VBD', 'NNP', 'DT', 'NN', '.']
deps = ['nsubj', 'ROOT', 'dative', 'det', 'dobj', 'punct']
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], tags=tags, deps=deps, heads=heads)
chunks = list(doc.noun_chunks)
assert len(chunks) == 3
assert chunks[0].text_with_ws == "She "
assert chunks[1].text_with_ws == "Bob "
assert chunks[2].text_with_ws == "a raise "