mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	* Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
		
			
				
	
	
		
			295 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			295 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import re
 | 
						|
 | 
						|
from .conll_ner2docs import n_sents_info
 | 
						|
from ...gold import iob_to_biluo, spans_from_biluo_tags
 | 
						|
from ...tokens import Doc, Token, Span
 | 
						|
from ...vocab import Vocab
 | 
						|
from wasabi import Printer
 | 
						|
 | 
						|
 | 
						|
def conllu2docs(
 | 
						|
    input_data,
 | 
						|
    n_sents=10,
 | 
						|
    append_morphology=False,
 | 
						|
    ner_map=None,
 | 
						|
    merge_subtokens=False,
 | 
						|
    no_print=False,
 | 
						|
    **_
 | 
						|
):
 | 
						|
    """
 | 
						|
    Convert conllu files into JSON format for use with train cli.
 | 
						|
    append_morphology parameter enables appending morphology to tags, which is
 | 
						|
    useful for languages such as Spanish, where UD tags are not so rich.
 | 
						|
 | 
						|
    Extract NER tags if available and convert them so that they follow
 | 
						|
    BILUO and the Wikipedia scheme
 | 
						|
    """
 | 
						|
    MISC_NER_PATTERN = "^((?:name|NE)=)?([BILU])-([A-Z_]+)|O$"
 | 
						|
    msg = Printer(no_print=no_print)
 | 
						|
    n_sents_info(msg, n_sents)
 | 
						|
    sent_docs = read_conllx(
 | 
						|
        input_data,
 | 
						|
        append_morphology=append_morphology,
 | 
						|
        ner_tag_pattern=MISC_NER_PATTERN,
 | 
						|
        ner_map=ner_map,
 | 
						|
        merge_subtokens=merge_subtokens,
 | 
						|
    )
 | 
						|
    docs = []
 | 
						|
    sent_docs_to_merge = []
 | 
						|
    for sent_doc in sent_docs:
 | 
						|
        sent_docs_to_merge.append(sent_doc)
 | 
						|
        if len(sent_docs_to_merge) % n_sents == 0:
 | 
						|
            docs.append(Doc.from_docs(sent_docs_to_merge))
 | 
						|
            sent_docs_to_merge = []
 | 
						|
    if sent_docs_to_merge:
 | 
						|
        docs.append(Doc.from_docs(sent_docs_to_merge))
 | 
						|
    return docs
 | 
						|
 | 
						|
 | 
						|
def has_ner(input_data, ner_tag_pattern):
 | 
						|
    """
 | 
						|
    Check the MISC column for NER tags.
 | 
						|
    """
 | 
						|
    for sent in input_data.strip().split("\n\n"):
 | 
						|
        lines = sent.strip().split("\n")
 | 
						|
        if lines:
 | 
						|
            while lines[0].startswith("#"):
 | 
						|
                lines.pop(0)
 | 
						|
            for line in lines:
 | 
						|
                parts = line.split("\t")
 | 
						|
                id_, word, lemma, pos, tag, morph, head, dep, _1, misc = parts
 | 
						|
                for misc_part in misc.split("|"):
 | 
						|
                    if re.match(ner_tag_pattern, misc_part):
 | 
						|
                        return True
 | 
						|
    return False
 | 
						|
 | 
						|
 | 
						|
def read_conllx(
 | 
						|
    input_data,
 | 
						|
    append_morphology=False,
 | 
						|
    merge_subtokens=False,
 | 
						|
    ner_tag_pattern="",
 | 
						|
    ner_map=None,
 | 
						|
):
 | 
						|
    """ Yield docs, one for each sentence """
 | 
						|
    vocab = Vocab()  # need vocab to make a minimal Doc
 | 
						|
    for sent in input_data.strip().split("\n\n"):
 | 
						|
        lines = sent.strip().split("\n")
 | 
						|
        if lines:
 | 
						|
            while lines[0].startswith("#"):
 | 
						|
                lines.pop(0)
 | 
						|
            doc = doc_from_conllu_sentence(
 | 
						|
                vocab,
 | 
						|
                lines,
 | 
						|
                ner_tag_pattern,
 | 
						|
                merge_subtokens=merge_subtokens,
 | 
						|
                append_morphology=append_morphology,
 | 
						|
                ner_map=ner_map,
 | 
						|
            )
 | 
						|
            yield doc
 | 
						|
 | 
						|
 | 
						|
def get_entities(lines, tag_pattern, ner_map=None):
 | 
						|
    """Find entities in the MISC column according to the pattern and map to
 | 
						|
    final entity type with `ner_map` if mapping present. Entity tag is 'O' if
 | 
						|
    the pattern is not matched.
 | 
						|
 | 
						|
    lines (str): CONLL-U lines for one sentences
 | 
						|
    tag_pattern (str): Regex pattern for entity tag
 | 
						|
    ner_map (dict): Map old NER tag names to new ones, '' maps to O.
 | 
						|
    RETURNS (list): List of BILUO entity tags
 | 
						|
    """
 | 
						|
    miscs = []
 | 
						|
    for line in lines:
 | 
						|
        parts = line.split("\t")
 | 
						|
        id_, word, lemma, pos, tag, morph, head, dep, _1, misc = parts
 | 
						|
        if "-" in id_ or "." in id_:
 | 
						|
            continue
 | 
						|
        miscs.append(misc)
 | 
						|
 | 
						|
    iob = []
 | 
						|
    for misc in miscs:
 | 
						|
        iob_tag = "O"
 | 
						|
        for misc_part in misc.split("|"):
 | 
						|
            tag_match = re.match(tag_pattern, misc_part)
 | 
						|
            if tag_match:
 | 
						|
                prefix = tag_match.group(2)
 | 
						|
                suffix = tag_match.group(3)
 | 
						|
                if prefix and suffix:
 | 
						|
                    iob_tag = prefix + "-" + suffix
 | 
						|
                    if ner_map:
 | 
						|
                        suffix = ner_map.get(suffix, suffix)
 | 
						|
                        if suffix == "":
 | 
						|
                            iob_tag = "O"
 | 
						|
                        else:
 | 
						|
                            iob_tag = prefix + "-" + suffix
 | 
						|
                break
 | 
						|
        iob.append(iob_tag)
 | 
						|
    return iob_to_biluo(iob)
 | 
						|
 | 
						|
 | 
						|
def doc_from_conllu_sentence(
 | 
						|
    vocab,
 | 
						|
    lines,
 | 
						|
    ner_tag_pattern,
 | 
						|
    merge_subtokens=False,
 | 
						|
    append_morphology=False,
 | 
						|
    ner_map=None,
 | 
						|
):
 | 
						|
    """Create an Example from the lines for one CoNLL-U sentence, merging
 | 
						|
    subtokens and appending morphology to tags if required.
 | 
						|
 | 
						|
    lines (str): The non-comment lines for a CoNLL-U sentence
 | 
						|
    ner_tag_pattern (str): The regex pattern for matching NER in MISC col
 | 
						|
    RETURNS (Example): An example containing the annotation
 | 
						|
    """
 | 
						|
    # create a Doc with each subtoken as its own token
 | 
						|
    # if merging subtokens, each subtoken orth is the merged subtoken form
 | 
						|
    if not Token.has_extension("merged_orth"):
 | 
						|
        Token.set_extension("merged_orth", default="")
 | 
						|
    if not Token.has_extension("merged_lemma"):
 | 
						|
        Token.set_extension("merged_lemma", default="")
 | 
						|
    if not Token.has_extension("merged_morph"):
 | 
						|
        Token.set_extension("merged_morph", default="")
 | 
						|
    if not Token.has_extension("merged_spaceafter"):
 | 
						|
        Token.set_extension("merged_spaceafter", default="")
 | 
						|
    words, spaces, tags, poses, morphs, lemmas = [], [], [], [], [], []
 | 
						|
    heads, deps = [], []
 | 
						|
    subtok_word = ""
 | 
						|
    in_subtok = False
 | 
						|
    for i in range(len(lines)):
 | 
						|
        line = lines[i]
 | 
						|
        parts = line.split("\t")
 | 
						|
        id_, word, lemma, pos, tag, morph, head, dep, _1, misc = parts
 | 
						|
        if "." in id_:
 | 
						|
            continue
 | 
						|
        if "-" in id_:
 | 
						|
            in_subtok = True
 | 
						|
        if "-" in id_:
 | 
						|
            in_subtok = True
 | 
						|
            subtok_word = word
 | 
						|
            subtok_start, subtok_end = id_.split("-")
 | 
						|
            subtok_spaceafter = "SpaceAfter=No" not in misc
 | 
						|
            continue
 | 
						|
        if merge_subtokens and in_subtok:
 | 
						|
            words.append(subtok_word)
 | 
						|
        else:
 | 
						|
            words.append(word)
 | 
						|
        if in_subtok:
 | 
						|
            if id_ == subtok_end:
 | 
						|
                spaces.append(subtok_spaceafter)
 | 
						|
            else:
 | 
						|
                spaces.append(False)
 | 
						|
        elif "SpaceAfter=No" in misc:
 | 
						|
            spaces.append(False)
 | 
						|
        else:
 | 
						|
            spaces.append(True)
 | 
						|
        if in_subtok and id_ == subtok_end:
 | 
						|
            subtok_word = ""
 | 
						|
            in_subtok = False
 | 
						|
        id_ = int(id_) - 1
 | 
						|
        head = (int(head) - 1) if head not in ("0", "_") else id_
 | 
						|
        tag = pos if tag == "_" else tag
 | 
						|
        morph = morph if morph != "_" else ""
 | 
						|
        dep = "ROOT" if dep == "root" else dep
 | 
						|
        lemmas.append(lemma)
 | 
						|
        poses.append(pos)
 | 
						|
        tags.append(tag)
 | 
						|
        morphs.append(morph)
 | 
						|
        heads.append(head)
 | 
						|
        deps.append(dep)
 | 
						|
 | 
						|
    doc = Doc(vocab, words=words, spaces=spaces)
 | 
						|
    for i in range(len(doc)):
 | 
						|
        doc[i].tag_ = tags[i]
 | 
						|
        doc[i].pos_ = poses[i]
 | 
						|
        doc[i].dep_ = deps[i]
 | 
						|
        doc[i].lemma_ = lemmas[i]
 | 
						|
        doc[i].head = doc[heads[i]]
 | 
						|
        doc[i]._.merged_orth = words[i]
 | 
						|
        doc[i]._.merged_morph = morphs[i]
 | 
						|
        doc[i]._.merged_lemma = lemmas[i]
 | 
						|
        doc[i]._.merged_spaceafter = spaces[i]
 | 
						|
    ents = get_entities(lines, ner_tag_pattern, ner_map)
 | 
						|
    doc.ents = spans_from_biluo_tags(doc, ents)
 | 
						|
    doc.is_parsed = True
 | 
						|
    doc.is_tagged = True
 | 
						|
 | 
						|
    if merge_subtokens:
 | 
						|
        doc = merge_conllu_subtokens(lines, doc)
 | 
						|
 | 
						|
    # create final Doc from custom Doc annotation
 | 
						|
    words, spaces, tags, morphs, lemmas, poses = [], [], [], [], [], []
 | 
						|
    heads, deps = [], []
 | 
						|
    for i, t in enumerate(doc):
 | 
						|
        words.append(t._.merged_orth)
 | 
						|
        lemmas.append(t._.merged_lemma)
 | 
						|
        spaces.append(t._.merged_spaceafter)
 | 
						|
        morphs.append(t._.merged_morph)
 | 
						|
        if append_morphology and t._.merged_morph:
 | 
						|
            tags.append(t.tag_ + "__" + t._.merged_morph)
 | 
						|
        else:
 | 
						|
            tags.append(t.tag_)
 | 
						|
        poses.append(t.pos_)
 | 
						|
        heads.append(t.head.i)
 | 
						|
        deps.append(t.dep_)
 | 
						|
 | 
						|
    doc_x = Doc(vocab, words=words, spaces=spaces)
 | 
						|
    for i in range(len(doc)):
 | 
						|
        doc_x[i].tag_ = tags[i]
 | 
						|
        doc_x[i].morph_ = morphs[i]
 | 
						|
        doc_x[i].lemma_ = lemmas[i]
 | 
						|
        doc_x[i].pos_ = poses[i]
 | 
						|
        doc_x[i].dep_ = deps[i]
 | 
						|
        doc_x[i].head = doc_x[heads[i]]
 | 
						|
    doc_x.ents = [Span(doc_x, ent.start, ent.end, label=ent.label) for ent in doc.ents]
 | 
						|
    doc_x.is_parsed = True
 | 
						|
    doc_x.is_tagged = True
 | 
						|
 | 
						|
    return doc_x
 | 
						|
 | 
						|
 | 
						|
def merge_conllu_subtokens(lines, doc):
 | 
						|
    # identify and process all subtoken spans to prepare attrs for merging
 | 
						|
    subtok_spans = []
 | 
						|
    for line in lines:
 | 
						|
        parts = line.split("\t")
 | 
						|
        id_, word, lemma, pos, tag, morph, head, dep, _1, misc = parts
 | 
						|
        if "-" in id_:
 | 
						|
            subtok_start, subtok_end = id_.split("-")
 | 
						|
            subtok_span = doc[int(subtok_start) - 1 : int(subtok_end)]
 | 
						|
            subtok_spans.append(subtok_span)
 | 
						|
            # create merged tag, morph, and lemma values
 | 
						|
            tags = []
 | 
						|
            morphs = {}
 | 
						|
            lemmas = []
 | 
						|
            for token in subtok_span:
 | 
						|
                tags.append(token.tag_)
 | 
						|
                lemmas.append(token.lemma_)
 | 
						|
                if token._.merged_morph:
 | 
						|
                    for feature in token._.merged_morph.split("|"):
 | 
						|
                        field, values = feature.split("=", 1)
 | 
						|
                        if field not in morphs:
 | 
						|
                            morphs[field] = set()
 | 
						|
                        for value in values.split(","):
 | 
						|
                            morphs[field].add(value)
 | 
						|
            # create merged features for each morph field
 | 
						|
            for field, values in morphs.items():
 | 
						|
                morphs[field] = field + "=" + ",".join(sorted(values))
 | 
						|
            # set the same attrs on all subtok tokens so that whatever head the
 | 
						|
            # retokenizer chooses, the final attrs are available on that token
 | 
						|
            for token in subtok_span:
 | 
						|
                token._.merged_orth = token.orth_
 | 
						|
                token._.merged_lemma = " ".join(lemmas)
 | 
						|
                token.tag_ = "_".join(tags)
 | 
						|
                token._.merged_morph = "|".join(sorted(morphs.values()))
 | 
						|
                token._.merged_spaceafter = (
 | 
						|
                    True if subtok_span[-1].whitespace_ else False
 | 
						|
                )
 | 
						|
 | 
						|
    with doc.retokenize() as retokenizer:
 | 
						|
        for span in subtok_spans:
 | 
						|
            retokenizer.merge(span)
 | 
						|
 | 
						|
    return doc
 |