spaCy/spacy/tests/parser/test_nn_beam.py
Sofie Van Landeghem c0f4a1e43b
train is from-config by default (#5575)
* verbose and tag_map options

* adding init_tok2vec option and only changing the tok2vec that is specified

* adding omit_extra_lookups and verifying textcat config

* wip

* pretrain bugfix

* add replace and resume options

* train_textcat fix

* raw text functionality

* improve UX when KeyError or when input data can't be parsed

* avoid unnecessary access to goldparse in TextCat pipe

* save performance information in nlp.meta

* add noise_level to config

* move nn_parser's defaults to config file

* multitask in config - doesn't work yet

* scorer offering both F and AUC options, need to be specified in config

* add textcat verification code from old train script

* small fixes to config files

* clean up

* set default config for ner/parser to allow create_pipe to work as before

* two more test fixes

* small fixes

* cleanup

* fix NER pickling + additional unit test

* create_pipe as before
2020-06-12 02:02:07 +02:00

103 lines
2.2 KiB
Python

import pytest
import numpy
from spacy.vocab import Vocab
from spacy.language import Language
from spacy.pipeline.defaults import default_parser
from spacy.pipeline import DependencyParser
from spacy.syntax.arc_eager import ArcEager
from spacy.tokens import Doc
from spacy.syntax._beam_utils import ParserBeam
from spacy.syntax.stateclass import StateClass
from spacy.gold import GoldParse
@pytest.fixture
def vocab():
return Vocab()
@pytest.fixture
def moves(vocab):
aeager = ArcEager(vocab.strings, {})
aeager.add_action(2, "nsubj")
aeager.add_action(3, "dobj")
aeager.add_action(2, "aux")
return aeager
@pytest.fixture
def docs(vocab):
return [Doc(vocab, words=["Rats", "bite", "things"])]
@pytest.fixture
def states(docs):
return [StateClass(doc) for doc in docs]
@pytest.fixture
def tokvecs(docs, vector_size):
output = []
for doc in docs:
vec = numpy.random.uniform(-0.1, 0.1, (len(doc), vector_size))
output.append(numpy.asarray(vec))
return output
@pytest.fixture
def golds(docs):
return [GoldParse(doc) for doc in docs]
@pytest.fixture
def batch_size(docs):
return len(docs)
@pytest.fixture
def beam_width():
return 4
@pytest.fixture
def vector_size():
return 6
@pytest.fixture
def beam(moves, states, golds, beam_width):
return ParserBeam(moves, states, golds, width=beam_width, density=0.0)
@pytest.fixture
def scores(moves, batch_size, beam_width):
return [
numpy.asarray(
numpy.random.uniform(-0.1, 0.1, (batch_size, moves.n_moves)), dtype="f"
)
for _ in range(batch_size)
]
def test_create_beam(beam):
pass
def test_beam_advance(beam, scores):
beam.advance(scores)
def test_beam_advance_too_few_scores(beam, scores):
with pytest.raises(IndexError):
beam.advance(scores[:-1])
def test_beam_parse():
nlp = Language()
config = {"learn_tokens": False, "min_action_freq": 30, "beam_width": 1, "beam_update_prob": 1.0}
nlp.add_pipe(DependencyParser(nlp.vocab, default_parser(), **config), name="parser")
nlp.parser.add_label("nsubj")
nlp.parser.begin_training([], token_vector_width=8, hidden_width=8)
doc = nlp.make_doc("Australia is a country")
nlp.parser(doc, beam_width=2)