spaCy/spacy/tests/pipeline/test_span_finder.py
2023-05-03 11:10:44 +00:00

188 lines
5.5 KiB
Python

import pytest
from thinc.api import Config
from thinc.types import Ragged
from spacy.language import Language
from spacy.pipeline.span_finder import DEFAULT_PREDICTED_KEY, span_finder_default_config
from spacy.tokens import Doc
from spacy.training import Example
from spacy.util import registry
TRAINING_KEY = "pytest"
@pytest.mark.parametrize(
"tokens_predicted, tokens_reference, reference_truths",
[
(
["Mon", ".", "-", "June", "16"],
["Mon.", "-", "June", "16"],
[(0, 0), (0, 0), (0, 0), (1, 1), (0, 0)],
),
(
["Mon.", "-", "J", "une", "16"],
["Mon.", "-", "June", "16"],
[(0, 0), (0, 0), (1, 0), (0, 1), (0, 0)],
),
(
["Mon", ".", "-", "June", "16"],
["Mon.", "-", "June", "1", "6"],
[(0, 0), (0, 0), (0, 0), (1, 1), (0, 0)],
),
(
["Mon.", "-J", "un", "e 16"],
["Mon.", "-", "June", "16"],
[(0, 0), (0, 0), (0, 0), (0, 0)],
),
pytest.param(
["Mon.-June", "16"],
["Mon.", "-", "June", "16"],
[(0, 1), (0, 0)],
),
pytest.param(
["Mon.-", "June", "16"],
["Mon.", "-", "J", "une", "16"],
[(0, 0), (1, 1), (0, 0)],
),
pytest.param(
["Mon.-", "June 16"],
["Mon.", "-", "June", "16"],
[(0, 0), (1, 0)],
),
],
)
def test_loss_alignment_example(tokens_predicted, tokens_reference, reference_truths):
nlp = Language()
predicted = Doc(
nlp.vocab, words=tokens_predicted, spaces=[False] * len(tokens_predicted)
)
reference = Doc(
nlp.vocab, words=tokens_reference, spaces=[False] * len(tokens_reference)
)
example = Example(predicted, reference)
example.reference.spans[TRAINING_KEY] = [example.reference.char_span(5, 9)]
span_finder = nlp.add_pipe("span_finder", config={"training_key": TRAINING_KEY})
nlp.initialize()
truth_scores = span_finder._get_aligned_truth_scores([example])
assert len(truth_scores) == len(tokens_predicted)
assert truth_scores == reference_truths
def test_span_finder_model():
nlp = Language()
docs = [nlp("This is an example."), nlp("This is the second example.")]
docs[0].spans[TRAINING_KEY] = [docs[0][3:4]]
docs[1].spans[TRAINING_KEY] = [docs[1][3:5]]
total_tokens = 0
for doc in docs:
total_tokens += len(doc)
config = Config().from_str(span_finder_default_config).interpolate()
model = registry.resolve(config)["model"]
model.initialize(X=docs)
predictions = model.predict(docs)
assert len(predictions) == total_tokens
assert len(predictions[0]) == 2
def test_span_finder_component():
nlp = Language()
docs = [nlp("This is an example."), nlp("This is the second example.")]
docs[0].spans[TRAINING_KEY] = [docs[0][3:4]]
docs[1].spans[TRAINING_KEY] = [docs[1][3:5]]
span_finder = nlp.add_pipe("span_finder", config={"training_key": TRAINING_KEY})
nlp.initialize()
docs = list(span_finder.pipe(docs))
# TODO: update hard-coded name
assert "span_candidates" in docs[0].spans
@pytest.mark.parametrize(
"min_length, max_length, span_count",
[(0, 0, 0), (None, None, 8), (2, None, 6), (None, 1, 2), (2, 3, 2)],
)
def test_set_annotations_span_lengths(min_length, max_length, span_count):
nlp = Language()
doc = nlp("Me and Jenny goes together like peas and carrots.")
if min_length == 0 and max_length == 0:
with pytest.raises(ValueError, match="Both 'min_length' and 'max_length'"):
span_finder = nlp.add_pipe(
"span_finder",
config={
"max_length": max_length,
"min_length": min_length,
"training_key": TRAINING_KEY,
},
)
return
span_finder = nlp.add_pipe(
"span_finder",
config={
"max_length": max_length,
"min_length": min_length,
"training_key": TRAINING_KEY,
},
)
nlp.initialize()
# Starts [Me, Jenny, peas]
# Ends [Jenny, peas, carrots]
scores = [
(1, 0),
(0, 0),
(1, 1),
(0, 0),
(0, 0),
(0, 0),
(1, 1),
(0, 0),
(0, 1),
(0, 0),
]
span_finder.set_annotations([doc], scores)
assert doc.spans[DEFAULT_PREDICTED_KEY]
assert len(doc.spans[DEFAULT_PREDICTED_KEY]) == span_count
# Assert below will fail when max_length is set to 0
if max_length is None:
max_length = float("inf")
if min_length is None:
min_length = 1
assert all(
min_length <= len(span) <= max_length
for span in doc.spans[DEFAULT_PREDICTED_KEY]
)
def test_span_finder_suggester():
nlp = Language()
docs = [nlp("This is an example."), nlp("This is the second example.")]
docs[0].spans[TRAINING_KEY] = [docs[0][3:4]]
docs[1].spans[TRAINING_KEY] = [docs[1][3:5]]
span_finder = nlp.add_pipe("span_finder", config={"training_key": TRAINING_KEY})
nlp.initialize()
span_finder.set_annotations(docs, span_finder.predict(docs))
suggester = registry.misc.get("spacy.span_finder_suggester.v1")(
candidates_key="span_candidates"
)
candidates = suggester(docs)
span_length = 0
for doc in docs:
span_length += len(doc.spans["span_candidates"])
assert span_length == len(candidates.dataXd)
assert type(candidates) == Ragged
assert len(candidates.dataXd[0]) == 2