mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	Preserve both `-` and `O` annotation in augmenters rather than relying on `Example.to_dict`'s default support for one option outside of labeled entity spans. This is intended as a temporary workaround for augmenters for v3.4.x. The behavior of `Example` and related IOB utils could be improved in the general case for v3.5.
		
			
				
	
	
		
			242 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			242 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pytest
 | ||
| from spacy.pipeline._parser_internals.nonproj import contains_cycle
 | ||
| from spacy.training import Corpus, Example
 | ||
| from spacy.training.augment import create_orth_variants_augmenter
 | ||
| from spacy.training.augment import create_lower_casing_augmenter
 | ||
| from spacy.training.augment import make_whitespace_variant
 | ||
| from spacy.lang.en import English
 | ||
| from spacy.tokens import DocBin, Doc, Span
 | ||
| from contextlib import contextmanager
 | ||
| import random
 | ||
| 
 | ||
| from ..util import make_tempdir
 | ||
| 
 | ||
| 
 | ||
| @contextmanager
 | ||
| def make_docbin(docs, name="roundtrip.spacy"):
 | ||
|     with make_tempdir() as tmpdir:
 | ||
|         output_file = tmpdir / name
 | ||
|         DocBin(docs=docs).to_disk(output_file)
 | ||
|         yield output_file
 | ||
| 
 | ||
| 
 | ||
| @pytest.fixture
 | ||
| def nlp():
 | ||
|     return English()
 | ||
| 
 | ||
| 
 | ||
| @pytest.fixture
 | ||
| def doc(nlp):
 | ||
|     # fmt: off
 | ||
|     words = ["Sarah", "'s", "sister", "flew", "to", "Silicon", "Valley", "via", "London", "."]
 | ||
|     tags = ["NNP", "POS", "NN", "VBD", "IN", "NNP", "NNP", "IN", "NNP", "."]
 | ||
|     pos = ["PROPN", "PART", "NOUN", "VERB", "ADP", "PROPN", "PROPN", "ADP", "PROPN", "PUNCT"]
 | ||
|     ents = ["B-PERSON", "I-PERSON", "O", "", "O", "B-LOC", "I-LOC", "O", "B-GPE", "O"]
 | ||
|     cats = {"TRAVEL": 1.0, "BAKING": 0.0}
 | ||
|     # fmt: on
 | ||
|     doc = Doc(nlp.vocab, words=words, tags=tags, pos=pos, ents=ents)
 | ||
|     doc.cats = cats
 | ||
|     return doc
 | ||
| 
 | ||
| 
 | ||
| @pytest.mark.filterwarnings("ignore::UserWarning")
 | ||
| def test_make_orth_variants(nlp):
 | ||
|     single = [
 | ||
|         {"tags": ["NFP"], "variants": ["…", "..."]},
 | ||
|         {"tags": [":"], "variants": ["-", "—", "–", "--", "---", "——"]},
 | ||
|     ]
 | ||
|     # fmt: off
 | ||
|     words = ["\n\n", "A", "\t", "B", "a", "b", "…", "...", "-", "—", "–", "--", "---", "——"]
 | ||
|     tags = ["_SP", "NN", "\t", "NN", "NN", "NN", "NFP", "NFP", ":", ":", ":", ":", ":", ":"]
 | ||
|     # fmt: on
 | ||
|     spaces = [True] * len(words)
 | ||
|     spaces[0] = False
 | ||
|     spaces[2] = False
 | ||
|     doc = Doc(nlp.vocab, words=words, spaces=spaces, tags=tags)
 | ||
|     augmenter = create_orth_variants_augmenter(
 | ||
|         level=0.2, lower=0.5, orth_variants={"single": single}
 | ||
|     )
 | ||
|     with make_docbin([doc] * 10) as output_file:
 | ||
|         reader = Corpus(output_file, augmenter=augmenter)
 | ||
|         # Due to randomness, only test that it works without errors
 | ||
|         list(reader(nlp))
 | ||
| 
 | ||
|     # check that the following settings lowercase everything
 | ||
|     augmenter = create_orth_variants_augmenter(
 | ||
|         level=1.0, lower=1.0, orth_variants={"single": single}
 | ||
|     )
 | ||
|     with make_docbin([doc] * 10) as output_file:
 | ||
|         reader = Corpus(output_file, augmenter=augmenter)
 | ||
|         for example in reader(nlp):
 | ||
|             for token in example.reference:
 | ||
|                 assert token.text == token.text.lower()
 | ||
| 
 | ||
|     # check that lowercasing is applied without tags
 | ||
|     doc = Doc(nlp.vocab, words=words, spaces=[True] * len(words))
 | ||
|     augmenter = create_orth_variants_augmenter(
 | ||
|         level=1.0, lower=1.0, orth_variants={"single": single}
 | ||
|     )
 | ||
|     with make_docbin([doc] * 10) as output_file:
 | ||
|         reader = Corpus(output_file, augmenter=augmenter)
 | ||
|         for example in reader(nlp):
 | ||
|             for ex_token, doc_token in zip(example.reference, doc):
 | ||
|                 assert ex_token.text == doc_token.text.lower()
 | ||
| 
 | ||
|     # check that no lowercasing is applied with lower=0.0
 | ||
|     doc = Doc(nlp.vocab, words=words, spaces=[True] * len(words))
 | ||
|     augmenter = create_orth_variants_augmenter(
 | ||
|         level=1.0, lower=0.0, orth_variants={"single": single}
 | ||
|     )
 | ||
|     with make_docbin([doc] * 10) as output_file:
 | ||
|         reader = Corpus(output_file, augmenter=augmenter)
 | ||
|         for example in reader(nlp):
 | ||
|             for ex_token, doc_token in zip(example.reference, doc):
 | ||
|                 assert ex_token.text == doc_token.text
 | ||
| 
 | ||
| 
 | ||
| def test_lowercase_augmenter(nlp, doc):
 | ||
|     augmenter = create_lower_casing_augmenter(level=1.0)
 | ||
|     with make_docbin([doc]) as output_file:
 | ||
|         reader = Corpus(output_file, augmenter=augmenter)
 | ||
|         corpus = list(reader(nlp))
 | ||
|     eg = corpus[0]
 | ||
|     assert eg.reference.text == doc.text.lower()
 | ||
|     assert eg.predicted.text == doc.text.lower()
 | ||
|     ents = [(e.start, e.end, e.label) for e in doc.ents]
 | ||
|     assert [(e.start, e.end, e.label) for e in eg.reference.ents] == ents
 | ||
|     for ref_ent, orig_ent in zip(eg.reference.ents, doc.ents):
 | ||
|         assert ref_ent.text == orig_ent.text.lower()
 | ||
|     assert [t.ent_iob for t in doc] == [t.ent_iob for t in eg.reference]
 | ||
|     assert [t.pos_ for t in eg.reference] == [t.pos_ for t in doc]
 | ||
| 
 | ||
|     # check that augmentation works when lowercasing leads to different
 | ||
|     # predicted tokenization
 | ||
|     words = ["A", "B", "CCC."]
 | ||
|     doc = Doc(nlp.vocab, words=words)
 | ||
|     with make_docbin([doc]) as output_file:
 | ||
|         reader = Corpus(output_file, augmenter=augmenter)
 | ||
|         corpus = list(reader(nlp))
 | ||
|     eg = corpus[0]
 | ||
|     assert eg.reference.text == doc.text.lower()
 | ||
|     assert eg.predicted.text == doc.text.lower()
 | ||
|     assert [t.text for t in eg.reference] == [t.lower() for t in words]
 | ||
|     assert [t.text for t in eg.predicted] == [
 | ||
|         t.text for t in nlp.make_doc(doc.text.lower())
 | ||
|     ]
 | ||
| 
 | ||
| 
 | ||
| @pytest.mark.filterwarnings("ignore::UserWarning")
 | ||
| def test_custom_data_augmentation(nlp, doc):
 | ||
|     def create_spongebob_augmenter(randomize: bool = False):
 | ||
|         def augment(nlp, example):
 | ||
|             text = example.text
 | ||
|             if randomize:
 | ||
|                 ch = [c.lower() if random.random() < 0.5 else c.upper() for c in text]
 | ||
|             else:
 | ||
|                 ch = [c.lower() if i % 2 else c.upper() for i, c in enumerate(text)]
 | ||
|             example_dict = example.to_dict()
 | ||
|             doc = nlp.make_doc("".join(ch))
 | ||
|             example_dict["token_annotation"]["ORTH"] = [t.text for t in doc]
 | ||
|             yield example
 | ||
|             yield example.from_dict(doc, example_dict)
 | ||
| 
 | ||
|         return augment
 | ||
| 
 | ||
|     with make_docbin([doc]) as output_file:
 | ||
|         reader = Corpus(output_file, augmenter=create_spongebob_augmenter())
 | ||
|         corpus = list(reader(nlp))
 | ||
|     orig_text = "Sarah 's sister flew to Silicon Valley via London . "
 | ||
|     augmented = "SaRaH 's sIsTeR FlEw tO SiLiCoN VaLlEy vIa lOnDoN . "
 | ||
|     assert corpus[0].text == orig_text
 | ||
|     assert corpus[0].reference.text == orig_text
 | ||
|     assert corpus[0].predicted.text == orig_text
 | ||
|     assert corpus[1].text == augmented
 | ||
|     assert corpus[1].reference.text == augmented
 | ||
|     assert corpus[1].predicted.text == augmented
 | ||
|     ents = [(e.start, e.end, e.label) for e in doc.ents]
 | ||
|     assert [(e.start, e.end, e.label) for e in corpus[0].reference.ents] == ents
 | ||
|     assert [(e.start, e.end, e.label) for e in corpus[1].reference.ents] == ents
 | ||
| 
 | ||
| 
 | ||
| def test_make_whitespace_variant(nlp):
 | ||
|     # fmt: off
 | ||
|     text = "They flew to New York City.\nThen they drove to Washington, D.C."
 | ||
|     words = ["They", "flew", "to", "New", "York", "City", ".", "\n", "Then", "they", "drove", "to", "Washington", ",", "D.C."]
 | ||
|     spaces = [True, True, True, True, True, False, False, False, True, True, True, True, False, True, False]
 | ||
|     tags = ["PRP", "VBD", "IN", "NNP", "NNP", "NNP", ".", "_SP", "RB", "PRP", "VBD", "IN", "NNP", ",", "NNP"]
 | ||
|     lemmas = ["they", "fly", "to", "New", "York", "City", ".", "\n", "then", "they", "drive", "to", "Washington", ",", "D.C."]
 | ||
|     heads = [1, 1, 1, 4, 5, 2, 1, 10, 10, 10, 10, 10, 11, 12, 12]
 | ||
|     deps = ["nsubj", "ROOT", "prep", "compound", "compound", "pobj", "punct", "dep", "advmod", "nsubj", "ROOT", "prep", "pobj", "punct", "appos"]
 | ||
|     ents = ["O", "", "O", "B-GPE", "I-GPE", "I-GPE", "O", "O", "O", "O", "O", "O", "B-GPE", "O", "B-GPE"]
 | ||
|     # fmt: on
 | ||
|     doc = Doc(
 | ||
|         nlp.vocab,
 | ||
|         words=words,
 | ||
|         spaces=spaces,
 | ||
|         tags=tags,
 | ||
|         lemmas=lemmas,
 | ||
|         heads=heads,
 | ||
|         deps=deps,
 | ||
|         ents=ents,
 | ||
|     )
 | ||
|     assert doc.text == text
 | ||
|     example = Example(nlp.make_doc(text), doc)
 | ||
|     # whitespace is only added internally in entity spans
 | ||
|     mod_ex = make_whitespace_variant(nlp, example, " ", 3)
 | ||
|     assert mod_ex.reference.ents[0].text == "New York City"
 | ||
|     mod_ex = make_whitespace_variant(nlp, example, " ", 4)
 | ||
|     assert mod_ex.reference.ents[0].text == "New  York City"
 | ||
|     mod_ex = make_whitespace_variant(nlp, example, " ", 5)
 | ||
|     assert mod_ex.reference.ents[0].text == "New York  City"
 | ||
|     mod_ex = make_whitespace_variant(nlp, example, " ", 6)
 | ||
|     assert mod_ex.reference.ents[0].text == "New York City"
 | ||
|     # add a space at every possible position
 | ||
|     for i in range(len(doc) + 1):
 | ||
|         mod_ex = make_whitespace_variant(nlp, example, " ", i)
 | ||
|         assert mod_ex.reference[i].is_space
 | ||
|         # adds annotation when the doc contains at least partial annotation
 | ||
|         assert [t.tag_ for t in mod_ex.reference] == tags[:i] + ["_SP"] + tags[i:]
 | ||
|         assert [t.lemma_ for t in mod_ex.reference] == lemmas[:i] + [" "] + lemmas[i:]
 | ||
|         assert [t.dep_ for t in mod_ex.reference] == deps[:i] + ["dep"] + deps[i:]
 | ||
|         # does not add partial annotation if doc does not contain this feature
 | ||
|         assert not mod_ex.reference.has_annotation("POS")
 | ||
|         assert not mod_ex.reference.has_annotation("MORPH")
 | ||
|         # produces well-formed trees
 | ||
|         assert not contains_cycle([t.head.i for t in mod_ex.reference])
 | ||
|         assert len(list(doc.sents)) == 2
 | ||
|         if i == 0:
 | ||
|             assert mod_ex.reference[i].head.i == 1
 | ||
|         else:
 | ||
|             assert mod_ex.reference[i].head.i == i - 1
 | ||
|         # adding another space also produces well-formed trees
 | ||
|         for j in (3, 8, 10):
 | ||
|             mod_ex2 = make_whitespace_variant(nlp, mod_ex, "\t\t\n", j)
 | ||
|             assert not contains_cycle([t.head.i for t in mod_ex2.reference])
 | ||
|             assert len(list(doc.sents)) == 2
 | ||
|             assert mod_ex2.reference[j].head.i == j - 1
 | ||
|         # entities are well-formed
 | ||
|         assert len(doc.ents) == len(mod_ex.reference.ents)
 | ||
|         # there is one token with missing entity information
 | ||
|         assert any(t.ent_iob == 0 for t in mod_ex.reference)
 | ||
|         for ent in mod_ex.reference.ents:
 | ||
|             assert not ent[0].is_space
 | ||
|             assert not ent[-1].is_space
 | ||
| 
 | ||
|     # no modifications if:
 | ||
|     # partial dependencies
 | ||
|     example.reference[0].dep_ = ""
 | ||
|     mod_ex = make_whitespace_variant(nlp, example, " ", 5)
 | ||
|     assert mod_ex.text == example.reference.text
 | ||
|     example.reference[0].dep_ = "nsubj"  # reset
 | ||
| 
 | ||
|     # spans
 | ||
|     example.reference.spans["spans"] = [example.reference[0:5]]
 | ||
|     mod_ex = make_whitespace_variant(nlp, example, " ", 5)
 | ||
|     assert mod_ex.text == example.reference.text
 | ||
|     del example.reference.spans["spans"]  # reset
 | ||
| 
 | ||
|     # links
 | ||
|     example.reference.ents = [Span(doc, 0, 2, label="ENT", kb_id="Q123")]
 | ||
|     mod_ex = make_whitespace_variant(nlp, example, " ", 5)
 | ||
|     assert mod_ex.text == example.reference.text
 |