mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	* Add `training.before_update` callback This callback can be used to implement training paradigms like gradual (un)freezing of components (e.g: the Transformer) after a certain number of training steps to mitigate catastrophic forgetting during fine-tuning. * Fix type annotation, default config value * Generalize arguments passed to the callback * Update schema * Pass `epoch` to callback, rename `current_step` to `step` * Add test * Simplify test * Replace config string with `spacy.blank` * Apply suggestions from code review Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Cleanup imports Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
		
			
				
	
	
		
			1153 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1153 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import random
 | |
| 
 | |
| import numpy
 | |
| import pytest
 | |
| import spacy
 | |
| import srsly
 | |
| from spacy.lang.en import English
 | |
| from spacy.tokens import Doc, DocBin
 | |
| from spacy.training import Alignment, Corpus, Example, biluo_tags_to_offsets
 | |
| from spacy.training import biluo_tags_to_spans, docs_to_json, iob_to_biluo
 | |
| from spacy.training import offsets_to_biluo_tags
 | |
| from spacy.training.alignment_array import AlignmentArray
 | |
| from spacy.training.align import get_alignments
 | |
| from spacy.training.converters import json_to_docs
 | |
| from spacy.training.loop import train_while_improving
 | |
| from spacy.util import get_words_and_spaces, load_model_from_path, minibatch
 | |
| from spacy.util import load_config_from_str
 | |
| from thinc.api import compounding, Adam
 | |
| 
 | |
| from ..util import make_tempdir
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def doc():
 | |
|     nlp = English()  # make sure we get a new vocab every time
 | |
|     # fmt: off
 | |
|     words = ["Sarah", "'s", "sister", "flew", "to", "Silicon", "Valley", "via", "London", "."]
 | |
|     tags = ["NNP", "POS", "NN", "VBD", "IN", "NNP", "NNP", "IN", "NNP", "."]
 | |
|     pos = ["PROPN", "PART", "NOUN", "VERB", "ADP", "PROPN", "PROPN", "ADP", "PROPN", "PUNCT"]
 | |
|     morphs = ["NounType=prop|Number=sing", "Poss=yes", "Number=sing", "Tense=past|VerbForm=fin",
 | |
|               "", "NounType=prop|Number=sing", "NounType=prop|Number=sing", "",
 | |
|               "NounType=prop|Number=sing", "PunctType=peri"]
 | |
|     # head of '.' is intentionally nonprojective for testing
 | |
|     heads = [2, 0, 3, 3, 3, 6, 4, 3, 7, 5]
 | |
|     deps = ["poss", "case", "nsubj", "ROOT", "prep", "compound", "pobj", "prep", "pobj", "punct"]
 | |
|     lemmas = ["Sarah", "'s", "sister", "fly", "to", "Silicon", "Valley", "via", "London", "."]
 | |
|     ents = ["O"] * len(words)
 | |
|     ents[0] = "B-PERSON"
 | |
|     ents[1] = "I-PERSON"
 | |
|     ents[5] = "B-LOC"
 | |
|     ents[6] = "I-LOC"
 | |
|     ents[8] = "B-GPE"
 | |
|     cats = {"TRAVEL": 1.0, "BAKING": 0.0}
 | |
|     # fmt: on
 | |
|     doc = Doc(
 | |
|         nlp.vocab,
 | |
|         words=words,
 | |
|         tags=tags,
 | |
|         pos=pos,
 | |
|         morphs=morphs,
 | |
|         heads=heads,
 | |
|         deps=deps,
 | |
|         lemmas=lemmas,
 | |
|         ents=ents,
 | |
|     )
 | |
|     doc.cats = cats
 | |
|     return doc
 | |
| 
 | |
| 
 | |
| @pytest.fixture()
 | |
| def merged_dict():
 | |
|     return {
 | |
|         "ids": [1, 2, 3, 4, 5, 6, 7],
 | |
|         "words": ["Hi", "there", "everyone", "It", "is", "just", "me"],
 | |
|         "spaces": [True, True, True, True, True, True, False],
 | |
|         "tags": ["INTJ", "ADV", "PRON", "PRON", "AUX", "ADV", "PRON"],
 | |
|         "sent_starts": [1, 0, 0, 1, 0, 0, 0],
 | |
|     }
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def vocab():
 | |
|     nlp = English()
 | |
|     return nlp.vocab
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(999)
 | |
| def test_issue999():
 | |
|     """Test that adding entities and resuming training works passably OK.
 | |
|     There are two issues here:
 | |
|     1) We have to re-add labels. This isn't very nice.
 | |
|     2) There's no way to set the learning rate for the weight update, so we
 | |
|         end up out-of-scale, causing it to learn too fast.
 | |
|     """
 | |
|     TRAIN_DATA = [
 | |
|         ["hey", []],
 | |
|         ["howdy", []],
 | |
|         ["hey there", []],
 | |
|         ["hello", []],
 | |
|         ["hi", []],
 | |
|         ["i'm looking for a place to eat", []],
 | |
|         ["i'm looking for a place in the north of town", [(31, 36, "LOCATION")]],
 | |
|         ["show me chinese restaurants", [(8, 15, "CUISINE")]],
 | |
|         ["show me chines restaurants", [(8, 14, "CUISINE")]],
 | |
|     ]
 | |
|     nlp = English()
 | |
|     ner = nlp.add_pipe("ner")
 | |
|     for _, offsets in TRAIN_DATA:
 | |
|         for start, end, label in offsets:
 | |
|             ner.add_label(label)
 | |
|     nlp.initialize()
 | |
|     for itn in range(20):
 | |
|         random.shuffle(TRAIN_DATA)
 | |
|         for raw_text, entity_offsets in TRAIN_DATA:
 | |
|             example = Example.from_dict(
 | |
|                 nlp.make_doc(raw_text), {"entities": entity_offsets}
 | |
|             )
 | |
|             nlp.update([example])
 | |
| 
 | |
|     with make_tempdir() as model_dir:
 | |
|         nlp.to_disk(model_dir)
 | |
|         nlp2 = load_model_from_path(model_dir)
 | |
| 
 | |
|     for raw_text, entity_offsets in TRAIN_DATA:
 | |
|         doc = nlp2(raw_text)
 | |
|         ents = {(ent.start_char, ent.end_char): ent.label_ for ent in doc.ents}
 | |
|         for start, end, label in entity_offsets:
 | |
|             if (start, end) in ents:
 | |
|                 assert ents[(start, end)] == label
 | |
|                 break
 | |
|             else:
 | |
|                 if entity_offsets:
 | |
|                     raise Exception(ents)
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(4402)
 | |
| def test_issue4402():
 | |
|     json_data = {
 | |
|         "id": 0,
 | |
|         "paragraphs": [
 | |
|             {
 | |
|                 "raw": "How should I cook bacon in an oven?\nI've heard of people cooking bacon in an oven.",
 | |
|                 "sentences": [
 | |
|                     {
 | |
|                         "tokens": [
 | |
|                             {"id": 0, "orth": "How", "ner": "O"},
 | |
|                             {"id": 1, "orth": "should", "ner": "O"},
 | |
|                             {"id": 2, "orth": "I", "ner": "O"},
 | |
|                             {"id": 3, "orth": "cook", "ner": "O"},
 | |
|                             {"id": 4, "orth": "bacon", "ner": "O"},
 | |
|                             {"id": 5, "orth": "in", "ner": "O"},
 | |
|                             {"id": 6, "orth": "an", "ner": "O"},
 | |
|                             {"id": 7, "orth": "oven", "ner": "O"},
 | |
|                             {"id": 8, "orth": "?", "ner": "O"},
 | |
|                         ],
 | |
|                         "brackets": [],
 | |
|                     },
 | |
|                     {
 | |
|                         "tokens": [
 | |
|                             {"id": 9, "orth": "\n", "ner": "O"},
 | |
|                             {"id": 10, "orth": "I", "ner": "O"},
 | |
|                             {"id": 11, "orth": "'ve", "ner": "O"},
 | |
|                             {"id": 12, "orth": "heard", "ner": "O"},
 | |
|                             {"id": 13, "orth": "of", "ner": "O"},
 | |
|                             {"id": 14, "orth": "people", "ner": "O"},
 | |
|                             {"id": 15, "orth": "cooking", "ner": "O"},
 | |
|                             {"id": 16, "orth": "bacon", "ner": "O"},
 | |
|                             {"id": 17, "orth": "in", "ner": "O"},
 | |
|                             {"id": 18, "orth": "an", "ner": "O"},
 | |
|                             {"id": 19, "orth": "oven", "ner": "O"},
 | |
|                             {"id": 20, "orth": ".", "ner": "O"},
 | |
|                         ],
 | |
|                         "brackets": [],
 | |
|                     },
 | |
|                 ],
 | |
|                 "cats": [
 | |
|                     {"label": "baking", "value": 1.0},
 | |
|                     {"label": "not_baking", "value": 0.0},
 | |
|                 ],
 | |
|             },
 | |
|             {
 | |
|                 "raw": "What is the difference between white and brown eggs?\n",
 | |
|                 "sentences": [
 | |
|                     {
 | |
|                         "tokens": [
 | |
|                             {"id": 0, "orth": "What", "ner": "O"},
 | |
|                             {"id": 1, "orth": "is", "ner": "O"},
 | |
|                             {"id": 2, "orth": "the", "ner": "O"},
 | |
|                             {"id": 3, "orth": "difference", "ner": "O"},
 | |
|                             {"id": 4, "orth": "between", "ner": "O"},
 | |
|                             {"id": 5, "orth": "white", "ner": "O"},
 | |
|                             {"id": 6, "orth": "and", "ner": "O"},
 | |
|                             {"id": 7, "orth": "brown", "ner": "O"},
 | |
|                             {"id": 8, "orth": "eggs", "ner": "O"},
 | |
|                             {"id": 9, "orth": "?", "ner": "O"},
 | |
|                         ],
 | |
|                         "brackets": [],
 | |
|                     },
 | |
|                     {"tokens": [{"id": 10, "orth": "\n", "ner": "O"}], "brackets": []},
 | |
|                 ],
 | |
|                 "cats": [
 | |
|                     {"label": "baking", "value": 0.0},
 | |
|                     {"label": "not_baking", "value": 1.0},
 | |
|                 ],
 | |
|             },
 | |
|         ],
 | |
|     }
 | |
|     nlp = English()
 | |
|     attrs = ["ORTH", "SENT_START", "ENT_IOB", "ENT_TYPE"]
 | |
|     with make_tempdir() as tmpdir:
 | |
|         output_file = tmpdir / "test4402.spacy"
 | |
|         docs = json_to_docs([json_data])
 | |
|         data = DocBin(docs=docs, attrs=attrs).to_bytes()
 | |
|         with output_file.open("wb") as file_:
 | |
|             file_.write(data)
 | |
|         reader = Corpus(output_file)
 | |
|         train_data = list(reader(nlp))
 | |
|         assert len(train_data) == 2
 | |
| 
 | |
|         split_train_data = []
 | |
|         for eg in train_data:
 | |
|             split_train_data.extend(eg.split_sents())
 | |
|         assert len(split_train_data) == 4
 | |
| 
 | |
| 
 | |
| CONFIG_7029 = """
 | |
| [nlp]
 | |
| lang = "en"
 | |
| pipeline = ["tok2vec", "tagger"]
 | |
| 
 | |
| [components]
 | |
| 
 | |
| [components.tok2vec]
 | |
| factory = "tok2vec"
 | |
| 
 | |
| [components.tok2vec.model]
 | |
| @architectures = "spacy.Tok2Vec.v1"
 | |
| 
 | |
| [components.tok2vec.model.embed]
 | |
| @architectures = "spacy.MultiHashEmbed.v1"
 | |
| width = ${components.tok2vec.model.encode:width}
 | |
| attrs = ["NORM","PREFIX","SUFFIX","SHAPE"]
 | |
| rows = [5000,2500,2500,2500]
 | |
| include_static_vectors = false
 | |
| 
 | |
| [components.tok2vec.model.encode]
 | |
| @architectures = "spacy.MaxoutWindowEncoder.v1"
 | |
| width = 96
 | |
| depth = 4
 | |
| window_size = 1
 | |
| maxout_pieces = 3
 | |
| 
 | |
| [components.tagger]
 | |
| factory = "tagger"
 | |
| 
 | |
| [components.tagger.model]
 | |
| @architectures = "spacy.Tagger.v2"
 | |
| nO = null
 | |
| 
 | |
| [components.tagger.model.tok2vec]
 | |
| @architectures = "spacy.Tok2VecListener.v1"
 | |
| width = ${components.tok2vec.model.encode:width}
 | |
| upstream = "*"
 | |
| """
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(7029)
 | |
| def test_issue7029():
 | |
|     """Test that an empty document doesn't mess up an entire batch."""
 | |
|     TRAIN_DATA = [
 | |
|         ("I like green eggs", {"tags": ["N", "V", "J", "N"]}),
 | |
|         ("Eat blue ham", {"tags": ["V", "J", "N"]}),
 | |
|     ]
 | |
|     nlp = English.from_config(load_config_from_str(CONFIG_7029))
 | |
|     train_examples = []
 | |
|     for t in TRAIN_DATA:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
 | |
|     optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | |
|     for i in range(50):
 | |
|         losses = {}
 | |
|         nlp.update(train_examples, sgd=optimizer, losses=losses)
 | |
|     texts = ["first", "second", "third", "fourth", "and", "then", "some", ""]
 | |
|     docs1 = list(nlp.pipe(texts, batch_size=1))
 | |
|     docs2 = list(nlp.pipe(texts, batch_size=4))
 | |
|     assert [doc[0].tag_ for doc in docs1[:-1]] == [doc[0].tag_ for doc in docs2[:-1]]
 | |
| 
 | |
| 
 | |
| def test_gold_biluo_U(en_vocab):
 | |
|     words = ["I", "flew", "to", "London", "."]
 | |
|     spaces = [True, True, True, False, True]
 | |
|     doc = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     entities = [(len("I flew to "), len("I flew to London"), "LOC")]
 | |
|     tags = offsets_to_biluo_tags(doc, entities)
 | |
|     assert tags == ["O", "O", "O", "U-LOC", "O"]
 | |
| 
 | |
| 
 | |
| def test_gold_biluo_BL(en_vocab):
 | |
|     words = ["I", "flew", "to", "San", "Francisco", "."]
 | |
|     spaces = [True, True, True, True, False, True]
 | |
|     doc = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     entities = [(len("I flew to "), len("I flew to San Francisco"), "LOC")]
 | |
|     tags = offsets_to_biluo_tags(doc, entities)
 | |
|     assert tags == ["O", "O", "O", "B-LOC", "L-LOC", "O"]
 | |
| 
 | |
| 
 | |
| def test_gold_biluo_BIL(en_vocab):
 | |
|     words = ["I", "flew", "to", "San", "Francisco", "Valley", "."]
 | |
|     spaces = [True, True, True, True, True, False, True]
 | |
|     doc = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")]
 | |
|     tags = offsets_to_biluo_tags(doc, entities)
 | |
|     assert tags == ["O", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"]
 | |
| 
 | |
| 
 | |
| def test_gold_biluo_overlap(en_vocab):
 | |
|     words = ["I", "flew", "to", "San", "Francisco", "Valley", "."]
 | |
|     spaces = [True, True, True, True, True, False, True]
 | |
|     doc = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     entities = [
 | |
|         (len("I flew to "), len("I flew to San Francisco Valley"), "LOC"),
 | |
|         (len("I flew to "), len("I flew to San Francisco"), "LOC"),
 | |
|     ]
 | |
|     with pytest.raises(ValueError):
 | |
|         offsets_to_biluo_tags(doc, entities)
 | |
| 
 | |
| 
 | |
| def test_gold_biluo_misalign(en_vocab):
 | |
|     words = ["I", "flew", "to", "San", "Francisco", "Valley."]
 | |
|     spaces = [True, True, True, True, True, False]
 | |
|     doc = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")]
 | |
|     with pytest.warns(UserWarning):
 | |
|         tags = offsets_to_biluo_tags(doc, entities)
 | |
|     assert tags == ["O", "O", "O", "-", "-", "-"]
 | |
| 
 | |
| 
 | |
| def test_example_constructor(en_vocab):
 | |
|     words = ["I", "like", "stuff"]
 | |
|     tags = ["NOUN", "VERB", "NOUN"]
 | |
|     tag_ids = [en_vocab.strings.add(tag) for tag in tags]
 | |
|     predicted = Doc(en_vocab, words=words)
 | |
|     reference = Doc(en_vocab, words=words)
 | |
|     reference = reference.from_array("TAG", numpy.array(tag_ids, dtype="uint64"))
 | |
|     example = Example(predicted, reference)
 | |
|     tags = example.get_aligned("TAG", as_string=True)
 | |
|     assert tags == ["NOUN", "VERB", "NOUN"]
 | |
| 
 | |
| 
 | |
| def test_example_from_dict_tags(en_vocab):
 | |
|     words = ["I", "like", "stuff"]
 | |
|     tags = ["NOUN", "VERB", "NOUN"]
 | |
|     predicted = Doc(en_vocab, words=words)
 | |
|     example = Example.from_dict(predicted, {"TAGS": tags})
 | |
|     tags = example.get_aligned("TAG", as_string=True)
 | |
|     assert tags == ["NOUN", "VERB", "NOUN"]
 | |
| 
 | |
| 
 | |
| def test_example_from_dict_no_ner(en_vocab):
 | |
|     words = ["a", "b", "c", "d"]
 | |
|     spaces = [True, True, False, True]
 | |
|     predicted = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     example = Example.from_dict(predicted, {"words": words})
 | |
|     ner_tags = example.get_aligned_ner()
 | |
|     assert ner_tags == [None, None, None, None]
 | |
| 
 | |
| 
 | |
| def test_example_from_dict_some_ner(en_vocab):
 | |
|     words = ["a", "b", "c", "d"]
 | |
|     spaces = [True, True, False, True]
 | |
|     predicted = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     example = Example.from_dict(
 | |
|         predicted, {"words": words, "entities": ["U-LOC", None, None, None]}
 | |
|     )
 | |
|     ner_tags = example.get_aligned_ner()
 | |
|     assert ner_tags == ["U-LOC", None, None, None]
 | |
| 
 | |
| 
 | |
| @pytest.mark.filterwarnings("ignore::UserWarning")
 | |
| def test_json_to_docs_no_ner(en_vocab):
 | |
|     data = [
 | |
|         {
 | |
|             "id": 1,
 | |
|             "paragraphs": [
 | |
|                 {
 | |
|                     "sentences": [
 | |
|                         {
 | |
|                             "tokens": [
 | |
|                                 {"dep": "nn", "head": 1, "tag": "NNP", "orth": "Ms."},
 | |
|                                 {
 | |
|                                     "dep": "nsubj",
 | |
|                                     "head": 1,
 | |
|                                     "tag": "NNP",
 | |
|                                     "orth": "Haag",
 | |
|                                 },
 | |
|                                 {
 | |
|                                     "dep": "ROOT",
 | |
|                                     "head": 0,
 | |
|                                     "tag": "VBZ",
 | |
|                                     "orth": "plays",
 | |
|                                 },
 | |
|                                 {
 | |
|                                     "dep": "dobj",
 | |
|                                     "head": -1,
 | |
|                                     "tag": "NNP",
 | |
|                                     "orth": "Elianti",
 | |
|                                 },
 | |
|                                 {"dep": "punct", "head": -2, "tag": ".", "orth": "."},
 | |
|                             ]
 | |
|                         }
 | |
|                     ]
 | |
|                 }
 | |
|             ],
 | |
|         }
 | |
|     ]
 | |
|     docs = list(json_to_docs(data))
 | |
|     assert len(docs) == 1
 | |
|     for doc in docs:
 | |
|         assert not doc.has_annotation("ENT_IOB")
 | |
|     for token in doc:
 | |
|         assert token.ent_iob == 0
 | |
|     eg = Example(
 | |
|         Doc(
 | |
|             doc.vocab,
 | |
|             words=[w.text for w in doc],
 | |
|             spaces=[bool(w.whitespace_) for w in doc],
 | |
|         ),
 | |
|         doc,
 | |
|     )
 | |
|     ner_tags = eg.get_aligned_ner()
 | |
|     assert ner_tags == [None, None, None, None, None]
 | |
| 
 | |
| 
 | |
| def test_split_sentences(en_vocab):
 | |
|     # fmt: off
 | |
|     words = ["I", "flew", "to", "San Francisco Valley", "had", "loads of fun"]
 | |
|     gold_words = ["I", "flew", "to", "San", "Francisco", "Valley", "had", "loads", "of", "fun"]
 | |
|     sent_starts = [True, False, False, False, False, False, True, False, False, False]
 | |
|     # fmt: on
 | |
|     doc = Doc(en_vocab, words=words)
 | |
|     example = Example.from_dict(doc, {"words": gold_words, "sent_starts": sent_starts})
 | |
|     assert example.text == "I flew to San Francisco Valley had loads of fun "
 | |
|     split_examples = example.split_sents()
 | |
|     assert len(split_examples) == 2
 | |
|     assert split_examples[0].text == "I flew to San Francisco Valley "
 | |
|     assert split_examples[1].text == "had loads of fun "
 | |
|     # fmt: off
 | |
|     words = ["I", "flew", "to", "San", "Francisco", "Valley", "had", "loads", "of fun"]
 | |
|     gold_words = ["I", "flew", "to", "San Francisco", "Valley", "had", "loads of", "fun"]
 | |
|     sent_starts = [True, False, False, False, False, True, False, False]
 | |
|     # fmt: on
 | |
|     doc = Doc(en_vocab, words=words)
 | |
|     example = Example.from_dict(doc, {"words": gold_words, "sent_starts": sent_starts})
 | |
|     assert example.text == "I flew to San Francisco Valley had loads of fun "
 | |
|     split_examples = example.split_sents()
 | |
|     assert len(split_examples) == 2
 | |
|     assert split_examples[0].text == "I flew to San Francisco Valley "
 | |
|     assert split_examples[1].text == "had loads of fun "
 | |
| 
 | |
| 
 | |
| def test_gold_biluo_one_to_many(en_vocab, en_tokenizer):
 | |
|     words = ["Mr and ", "Mrs Smith", "flew to", "San Francisco Valley", "."]
 | |
|     spaces = [True, True, True, False, False]
 | |
|     doc = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     prefix = "Mr and Mrs Smith flew to "
 | |
|     entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")]
 | |
|     gold_words = ["Mr and Mrs Smith", "flew", "to", "San", "Francisco", "Valley", "."]
 | |
|     example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
 | |
|     ner_tags = example.get_aligned_ner()
 | |
|     assert ner_tags == ["O", "O", "O", "U-LOC", "O"]
 | |
| 
 | |
|     entities = [
 | |
|         (len("Mr and "), len("Mr and Mrs Smith"), "PERSON"),  # "Mrs Smith" is a PERSON
 | |
|         (len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
 | |
|     ]
 | |
|     # fmt: off
 | |
|     gold_words = ["Mr and", "Mrs", "Smith", "flew", "to", "San", "Francisco", "Valley", "."]
 | |
|     # fmt: on
 | |
|     example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
 | |
|     ner_tags = example.get_aligned_ner()
 | |
|     assert ner_tags == ["O", "U-PERSON", "O", "U-LOC", "O"]
 | |
| 
 | |
|     entities = [
 | |
|         (len("Mr and "), len("Mr and Mrs"), "PERSON"),  # "Mrs" is a Person
 | |
|         (len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
 | |
|     ]
 | |
|     # fmt: off
 | |
|     gold_words = ["Mr and", "Mrs", "Smith", "flew", "to", "San", "Francisco", "Valley", "."]
 | |
|     # fmt: on
 | |
|     example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
 | |
|     ner_tags = example.get_aligned_ner()
 | |
|     assert ner_tags == ["O", None, "O", "U-LOC", "O"]
 | |
| 
 | |
| 
 | |
| def test_gold_biluo_many_to_one(en_vocab, en_tokenizer):
 | |
|     words = ["Mr and", "Mrs", "Smith", "flew", "to", "San", "Francisco", "Valley", "."]
 | |
|     spaces = [True, True, True, True, True, True, True, False, False]
 | |
|     doc = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     prefix = "Mr and Mrs Smith flew to "
 | |
|     entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")]
 | |
|     gold_words = ["Mr and Mrs Smith", "flew to", "San Francisco Valley", "."]
 | |
|     example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
 | |
|     ner_tags = example.get_aligned_ner()
 | |
|     assert ner_tags == ["O", "O", "O", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"]
 | |
| 
 | |
|     entities = [
 | |
|         (len("Mr and "), len("Mr and Mrs Smith"), "PERSON"),  # "Mrs Smith" is a PERSON
 | |
|         (len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
 | |
|     ]
 | |
|     gold_words = ["Mr and", "Mrs Smith", "flew to", "San Francisco Valley", "."]
 | |
|     example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
 | |
|     ner_tags = example.get_aligned_ner()
 | |
|     expected = ["O", "B-PERSON", "L-PERSON", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"]
 | |
|     assert ner_tags == expected
 | |
| 
 | |
| 
 | |
| def test_gold_biluo_misaligned(en_vocab, en_tokenizer):
 | |
|     words = ["Mr and Mrs", "Smith", "flew", "to", "San Francisco", "Valley", "."]
 | |
|     spaces = [True, True, True, True, True, False, False]
 | |
|     doc = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     prefix = "Mr and Mrs Smith flew to "
 | |
|     entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")]
 | |
|     gold_words = ["Mr", "and Mrs Smith", "flew to", "San", "Francisco Valley", "."]
 | |
|     example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
 | |
|     ner_tags = example.get_aligned_ner()
 | |
|     assert ner_tags == ["O", "O", "O", "O", "B-LOC", "L-LOC", "O"]
 | |
| 
 | |
|     entities = [
 | |
|         (len("Mr and "), len("Mr and Mrs Smith"), "PERSON"),  # "Mrs Smith" is a PERSON
 | |
|         (len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
 | |
|     ]
 | |
|     gold_words = ["Mr and", "Mrs Smith", "flew to", "San", "Francisco Valley", "."]
 | |
|     example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
 | |
|     ner_tags = example.get_aligned_ner()
 | |
|     assert ner_tags == [None, None, "O", "O", "B-LOC", "L-LOC", "O"]
 | |
| 
 | |
| 
 | |
| def test_gold_biluo_additional_whitespace(en_vocab, en_tokenizer):
 | |
|     # additional whitespace tokens in GoldParse words
 | |
|     words, spaces = get_words_and_spaces(
 | |
|         ["I", "flew", "to", "San Francisco", "Valley", "."],
 | |
|         "I flew  to San Francisco Valley.",
 | |
|     )
 | |
|     doc = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     prefix = "I flew  to "
 | |
|     entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")]
 | |
|     gold_words = ["I", "flew", " ", "to", "San Francisco Valley", "."]
 | |
|     gold_spaces = [True, True, False, True, False, False]
 | |
|     example = Example.from_dict(
 | |
|         doc, {"words": gold_words, "spaces": gold_spaces, "entities": entities}
 | |
|     )
 | |
|     ner_tags = example.get_aligned_ner()
 | |
|     assert ner_tags == ["O", "O", "O", "O", "B-LOC", "L-LOC", "O"]
 | |
| 
 | |
| 
 | |
| def test_gold_biluo_4791(en_vocab, en_tokenizer):
 | |
|     doc = en_tokenizer("I'll return the A54 amount")
 | |
|     gold_words = ["I", "'ll", "return", "the", "A", "54", "amount"]
 | |
|     gold_spaces = [False, True, True, True, False, True, False]
 | |
|     entities = [(16, 19, "MONEY")]
 | |
|     example = Example.from_dict(
 | |
|         doc, {"words": gold_words, "spaces": gold_spaces, "entities": entities}
 | |
|     )
 | |
|     ner_tags = example.get_aligned_ner()
 | |
|     assert ner_tags == ["O", "O", "O", "O", "U-MONEY", "O"]
 | |
| 
 | |
|     doc = en_tokenizer("I'll return the $54 amount")
 | |
|     gold_words = ["I", "'ll", "return", "the", "$", "54", "amount"]
 | |
|     gold_spaces = [False, True, True, True, False, True, False]
 | |
|     entities = [(16, 19, "MONEY")]
 | |
|     example = Example.from_dict(
 | |
|         doc, {"words": gold_words, "spaces": gold_spaces, "entities": entities}
 | |
|     )
 | |
|     ner_tags = example.get_aligned_ner()
 | |
|     assert ner_tags == ["O", "O", "O", "O", "B-MONEY", "L-MONEY", "O"]
 | |
| 
 | |
| 
 | |
| def test_roundtrip_offsets_biluo_conversion(en_tokenizer):
 | |
|     text = "I flew to Silicon Valley via London."
 | |
|     biluo_tags = ["O", "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
 | |
|     offsets = [(10, 24, "LOC"), (29, 35, "GPE")]
 | |
|     doc = en_tokenizer(text)
 | |
|     biluo_tags_converted = offsets_to_biluo_tags(doc, offsets)
 | |
|     assert biluo_tags_converted == biluo_tags
 | |
|     offsets_converted = biluo_tags_to_offsets(doc, biluo_tags)
 | |
|     offsets_converted = [ent for ent in offsets if ent[2]]
 | |
|     assert offsets_converted == offsets
 | |
| 
 | |
| 
 | |
| def test_biluo_spans(en_tokenizer):
 | |
|     doc = en_tokenizer("I flew to Silicon Valley via London.")
 | |
|     biluo_tags = ["O", "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
 | |
|     spans = biluo_tags_to_spans(doc, biluo_tags)
 | |
|     spans = [span for span in spans if span.label_]
 | |
|     assert len(spans) == 2
 | |
|     assert spans[0].text == "Silicon Valley"
 | |
|     assert spans[0].label_ == "LOC"
 | |
|     assert spans[1].text == "London"
 | |
|     assert spans[1].label_ == "GPE"
 | |
| 
 | |
| 
 | |
| def test_aligned_spans_y2x(en_vocab, en_tokenizer):
 | |
|     words = ["Mr and Mrs Smith", "flew", "to", "San Francisco Valley", "."]
 | |
|     spaces = [True, True, True, False, False]
 | |
|     doc = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     prefix = "Mr and Mrs Smith flew to "
 | |
|     entities = [
 | |
|         (0, len("Mr and Mrs Smith"), "PERSON"),
 | |
|         (len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
 | |
|     ]
 | |
|     # fmt: off
 | |
|     tokens_ref = ["Mr", "and", "Mrs", "Smith", "flew", "to", "San", "Francisco", "Valley", "."]
 | |
|     # fmt: on
 | |
|     example = Example.from_dict(doc, {"words": tokens_ref, "entities": entities})
 | |
|     ents_ref = example.reference.ents
 | |
|     assert [(ent.start, ent.end) for ent in ents_ref] == [(0, 4), (6, 9)]
 | |
|     ents_y2x = example.get_aligned_spans_y2x(ents_ref)
 | |
|     assert [(ent.start, ent.end) for ent in ents_y2x] == [(0, 1), (3, 4)]
 | |
| 
 | |
| 
 | |
| def test_aligned_spans_x2y(en_vocab, en_tokenizer):
 | |
|     text = "Mr and Mrs Smith flew to San Francisco Valley"
 | |
|     nlp = English()
 | |
|     patterns = [
 | |
|         {"label": "PERSON", "pattern": "Mr and Mrs Smith"},
 | |
|         {"label": "LOC", "pattern": "San Francisco Valley"},
 | |
|     ]
 | |
|     ruler = nlp.add_pipe("entity_ruler")
 | |
|     ruler.add_patterns(patterns)
 | |
|     doc = nlp(text)
 | |
|     assert [(ent.start, ent.end) for ent in doc.ents] == [(0, 4), (6, 9)]
 | |
|     prefix = "Mr and Mrs Smith flew to "
 | |
|     entities = [
 | |
|         (0, len("Mr and Mrs Smith"), "PERSON"),
 | |
|         (len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
 | |
|     ]
 | |
|     tokens_ref = ["Mr and Mrs", "Smith", "flew", "to", "San Francisco", "Valley"]
 | |
|     example = Example.from_dict(doc, {"words": tokens_ref, "entities": entities})
 | |
|     assert [(ent.start, ent.end) for ent in example.reference.ents] == [(0, 2), (4, 6)]
 | |
|     # Ensure that 'get_aligned_spans_x2y' has the aligned entities correct
 | |
|     ents_pred = example.predicted.ents
 | |
|     assert [(ent.start, ent.end) for ent in ents_pred] == [(0, 4), (6, 9)]
 | |
|     ents_x2y = example.get_aligned_spans_x2y(ents_pred)
 | |
|     assert [(ent.start, ent.end) for ent in ents_x2y] == [(0, 2), (4, 6)]
 | |
| 
 | |
| 
 | |
| def test_aligned_spans_y2x_overlap(en_vocab, en_tokenizer):
 | |
|     text = "I flew to San Francisco Valley"
 | |
|     nlp = English()
 | |
|     doc = nlp(text)
 | |
|     # the reference doc has overlapping spans
 | |
|     gold_doc = nlp.make_doc(text)
 | |
|     spans = []
 | |
|     prefix = "I flew to "
 | |
|     spans.append(
 | |
|         gold_doc.char_span(len(prefix), len(prefix + "San Francisco"), label="CITY")
 | |
|     )
 | |
|     spans.append(
 | |
|         gold_doc.char_span(
 | |
|             len(prefix), len(prefix + "San Francisco Valley"), label="VALLEY"
 | |
|         )
 | |
|     )
 | |
|     spans_key = "overlap_ents"
 | |
|     gold_doc.spans[spans_key] = spans
 | |
|     example = Example(doc, gold_doc)
 | |
|     spans_gold = example.reference.spans[spans_key]
 | |
|     assert [(ent.start, ent.end) for ent in spans_gold] == [(3, 5), (3, 6)]
 | |
| 
 | |
|     # Ensure that 'get_aligned_spans_y2x' has the aligned entities correct
 | |
|     spans_y2x_no_overlap = example.get_aligned_spans_y2x(
 | |
|         spans_gold, allow_overlap=False
 | |
|     )
 | |
|     assert [(ent.start, ent.end) for ent in spans_y2x_no_overlap] == [(3, 5)]
 | |
|     spans_y2x_overlap = example.get_aligned_spans_y2x(spans_gold, allow_overlap=True)
 | |
|     assert [(ent.start, ent.end) for ent in spans_y2x_overlap] == [(3, 5), (3, 6)]
 | |
| 
 | |
| 
 | |
| def test_gold_ner_missing_tags(en_tokenizer):
 | |
|     doc = en_tokenizer("I flew to Silicon Valley via London.")
 | |
|     biluo_tags = [None, "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
 | |
|     example = Example.from_dict(doc, {"entities": biluo_tags})
 | |
|     assert example.get_aligned("ENT_IOB") == [0, 2, 2, 3, 1, 2, 3, 2]
 | |
| 
 | |
| 
 | |
| def test_projectivize(en_tokenizer):
 | |
|     doc = en_tokenizer("He pretty quickly walks away")
 | |
|     heads = [3, 2, 3, 3, 2]
 | |
|     deps = ["dep"] * len(heads)
 | |
|     example = Example.from_dict(doc, {"heads": heads, "deps": deps})
 | |
|     proj_heads, proj_labels = example.get_aligned_parse(projectivize=True)
 | |
|     nonproj_heads, nonproj_labels = example.get_aligned_parse(projectivize=False)
 | |
|     assert proj_heads == [3, 2, 3, 3, 3]
 | |
|     assert nonproj_heads == [3, 2, 3, 3, 2]
 | |
| 
 | |
|     # Test single token documents
 | |
|     doc = en_tokenizer("Conrail")
 | |
|     heads = [0]
 | |
|     deps = ["dep"]
 | |
|     example = Example.from_dict(doc, {"heads": heads, "deps": deps})
 | |
|     proj_heads, proj_labels = example.get_aligned_parse(projectivize=True)
 | |
|     assert proj_heads == heads
 | |
|     assert proj_labels == deps
 | |
| 
 | |
|     # Test documents with no alignments
 | |
|     doc_a = Doc(
 | |
|         doc.vocab, words=["Double-Jointed"], spaces=[False], deps=["ROOT"], heads=[0]
 | |
|     )
 | |
|     doc_b = Doc(
 | |
|         doc.vocab,
 | |
|         words=["Double", "-", "Jointed"],
 | |
|         spaces=[True, True, True],
 | |
|         deps=["amod", "punct", "ROOT"],
 | |
|         heads=[2, 2, 2],
 | |
|     )
 | |
|     example = Example(doc_a, doc_b)
 | |
|     proj_heads, proj_deps = example.get_aligned_parse(projectivize=True)
 | |
|     assert proj_heads == [None]
 | |
|     assert proj_deps == [None]
 | |
| 
 | |
| 
 | |
| def test_iob_to_biluo():
 | |
|     good_iob = ["O", "O", "B-LOC", "I-LOC", "O", "B-PERSON"]
 | |
|     good_biluo = ["O", "O", "B-LOC", "L-LOC", "O", "U-PERSON"]
 | |
|     bad_iob = ["O", "O", '"', "B-LOC", "I-LOC"]
 | |
|     converted_biluo = iob_to_biluo(good_iob)
 | |
|     assert good_biluo == converted_biluo
 | |
|     with pytest.raises(ValueError):
 | |
|         iob_to_biluo(bad_iob)
 | |
| 
 | |
| 
 | |
| def test_roundtrip_docs_to_docbin(doc):
 | |
|     text = doc.text
 | |
|     idx = [t.idx for t in doc]
 | |
|     tags = [t.tag_ for t in doc]
 | |
|     pos = [t.pos_ for t in doc]
 | |
|     morphs = [str(t.morph) for t in doc]
 | |
|     lemmas = [t.lemma_ for t in doc]
 | |
|     deps = [t.dep_ for t in doc]
 | |
|     heads = [t.head.i for t in doc]
 | |
|     cats = doc.cats
 | |
|     ents = [(e.start_char, e.end_char, e.label_) for e in doc.ents]
 | |
|     # roundtrip to DocBin
 | |
|     with make_tempdir() as tmpdir:
 | |
|         # use a separate vocab to test that all labels are added
 | |
|         reloaded_nlp = English()
 | |
|         json_file = tmpdir / "roundtrip.json"
 | |
|         srsly.write_json(json_file, [docs_to_json(doc)])
 | |
|         output_file = tmpdir / "roundtrip.spacy"
 | |
|         DocBin(docs=[doc]).to_disk(output_file)
 | |
|         reader = Corpus(output_file)
 | |
|         reloaded_examples = list(reader(reloaded_nlp))
 | |
|     assert len(doc) == sum(len(eg) for eg in reloaded_examples)
 | |
|     reloaded_example = reloaded_examples[0]
 | |
|     assert text == reloaded_example.reference.text
 | |
|     assert idx == [t.idx for t in reloaded_example.reference]
 | |
|     assert tags == [t.tag_ for t in reloaded_example.reference]
 | |
|     assert pos == [t.pos_ for t in reloaded_example.reference]
 | |
|     assert morphs == [str(t.morph) for t in reloaded_example.reference]
 | |
|     assert lemmas == [t.lemma_ for t in reloaded_example.reference]
 | |
|     assert deps == [t.dep_ for t in reloaded_example.reference]
 | |
|     assert heads == [t.head.i for t in reloaded_example.reference]
 | |
|     assert ents == [
 | |
|         (e.start_char, e.end_char, e.label_) for e in reloaded_example.reference.ents
 | |
|     ]
 | |
|     assert "TRAVEL" in reloaded_example.reference.cats
 | |
|     assert "BAKING" in reloaded_example.reference.cats
 | |
|     assert cats["TRAVEL"] == reloaded_example.reference.cats["TRAVEL"]
 | |
|     assert cats["BAKING"] == reloaded_example.reference.cats["BAKING"]
 | |
| 
 | |
| 
 | |
| def test_docbin_user_data_serialized(doc):
 | |
|     doc.user_data["check"] = True
 | |
|     nlp = English()
 | |
| 
 | |
|     with make_tempdir() as tmpdir:
 | |
|         output_file = tmpdir / "userdata.spacy"
 | |
|         DocBin(docs=[doc], store_user_data=True).to_disk(output_file)
 | |
|         reloaded_docs = DocBin().from_disk(output_file).get_docs(nlp.vocab)
 | |
|         reloaded_doc = list(reloaded_docs)[0]
 | |
| 
 | |
|     assert reloaded_doc.user_data["check"] == True
 | |
| 
 | |
| 
 | |
| def test_docbin_user_data_not_serialized(doc):
 | |
|     # this isn't serializable, but that shouldn't cause an error
 | |
|     doc.user_data["check"] = set()
 | |
|     nlp = English()
 | |
| 
 | |
|     with make_tempdir() as tmpdir:
 | |
|         output_file = tmpdir / "userdata.spacy"
 | |
|         DocBin(docs=[doc], store_user_data=False).to_disk(output_file)
 | |
|         reloaded_docs = DocBin().from_disk(output_file).get_docs(nlp.vocab)
 | |
|         reloaded_doc = list(reloaded_docs)[0]
 | |
| 
 | |
|     assert "check" not in reloaded_doc.user_data
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "tokens_a,tokens_b,expected",
 | |
|     [
 | |
|         (["a", "b", "c"], ["ab", "c"], ([[0], [0], [1]], [[0, 1], [2]])),
 | |
|         (
 | |
|             ["a", "b", '"', "c"],
 | |
|             ['ab"', "c"],
 | |
|             ([[0], [0], [0], [1]], [[0, 1, 2], [3]]),
 | |
|         ),
 | |
|         (["a", "bc"], ["ab", "c"], ([[0], [0, 1]], [[0, 1], [1]])),
 | |
|         (
 | |
|             ["ab", "c", "d"],
 | |
|             ["a", "b", "cd"],
 | |
|             ([[0, 1], [2], [2]], [[0], [0], [1, 2]]),
 | |
|         ),
 | |
|         (
 | |
|             ["a", "b", "cd"],
 | |
|             ["a", "b", "c", "d"],
 | |
|             ([[0], [1], [2, 3]], [[0], [1], [2], [2]]),
 | |
|         ),
 | |
|         ([" ", "a"], ["a"], ([[], [0]], [[1]])),
 | |
|         (
 | |
|             ["a", "''", "'", ","],
 | |
|             ["a'", "''", ","],
 | |
|             ([[0], [0, 1], [1], [2]], [[0, 1], [1, 2], [3]]),
 | |
|         ),
 | |
|     ],
 | |
| )
 | |
| def test_align(tokens_a, tokens_b, expected):  # noqa
 | |
|     a2b, b2a = get_alignments(tokens_a, tokens_b)
 | |
|     assert (a2b, b2a) == expected  # noqa
 | |
|     # check symmetry
 | |
|     a2b, b2a = get_alignments(tokens_b, tokens_a)  # noqa
 | |
|     assert (b2a, a2b) == expected  # noqa
 | |
| 
 | |
| 
 | |
| def test_goldparse_startswith_space(en_tokenizer):
 | |
|     text = " a"
 | |
|     doc = en_tokenizer(text)
 | |
|     gold_words = ["a"]
 | |
|     entities = ["U-DATE"]
 | |
|     deps = ["ROOT"]
 | |
|     heads = [0]
 | |
|     example = Example.from_dict(
 | |
|         doc, {"words": gold_words, "entities": entities, "deps": deps, "heads": heads}
 | |
|     )
 | |
|     ner_tags = example.get_aligned_ner()
 | |
|     assert ner_tags == ["O", "U-DATE"]
 | |
|     assert example.get_aligned("DEP", as_string=True) == [None, "ROOT"]
 | |
| 
 | |
| 
 | |
| def test_goldparse_endswith_space(en_tokenizer):
 | |
|     text = "a\n"
 | |
|     doc = en_tokenizer(text)
 | |
|     gold_words = ["a"]
 | |
|     entities = ["U-DATE"]
 | |
|     deps = ["ROOT"]
 | |
|     heads = [0]
 | |
|     example = Example.from_dict(
 | |
|         doc, {"words": gold_words, "entities": entities, "deps": deps, "heads": heads}
 | |
|     )
 | |
|     ner_tags = example.get_aligned_ner()
 | |
|     assert ner_tags == ["U-DATE", "O"]
 | |
|     assert example.get_aligned("DEP", as_string=True) == ["ROOT", None]
 | |
| 
 | |
| 
 | |
| def test_gold_constructor():
 | |
|     """Test that the Example constructor works fine"""
 | |
|     nlp = English()
 | |
|     doc = nlp("This is a sentence")
 | |
|     example = Example.from_dict(doc, {"cats": {"cat1": 1.0, "cat2": 0.0}})
 | |
|     assert example.get_aligned("ORTH", as_string=True) == [
 | |
|         "This",
 | |
|         "is",
 | |
|         "a",
 | |
|         "sentence",
 | |
|     ]
 | |
|     assert example.reference.cats["cat1"]
 | |
|     assert not example.reference.cats["cat2"]
 | |
| 
 | |
| 
 | |
| def test_tuple_format_implicit():
 | |
|     """Test tuple format"""
 | |
| 
 | |
|     train_data = [
 | |
|         ("Uber blew through $1 million a week", {"entities": [(0, 4, "ORG")]}),
 | |
|         (
 | |
|             "Spotify steps up Asia expansion",
 | |
|             {"entities": [(0, 7, "ORG"), (17, 21, "LOC")]},
 | |
|         ),
 | |
|         ("Google rebrands its business apps", {"entities": [(0, 6, "ORG")]}),
 | |
|     ]
 | |
| 
 | |
|     _train_tuples(train_data)
 | |
| 
 | |
| 
 | |
| def test_tuple_format_implicit_invalid():
 | |
|     """Test that an error is thrown for an implicit invalid field"""
 | |
|     train_data = [
 | |
|         ("Uber blew through $1 million a week", {"frumble": [(0, 4, "ORG")]}),
 | |
|         (
 | |
|             "Spotify steps up Asia expansion",
 | |
|             {"entities": [(0, 7, "ORG"), (17, 21, "LOC")]},
 | |
|         ),
 | |
|         ("Google rebrands its business apps", {"entities": [(0, 6, "ORG")]}),
 | |
|     ]
 | |
|     with pytest.raises(KeyError):
 | |
|         _train_tuples(train_data)
 | |
| 
 | |
| 
 | |
| def _train_tuples(train_data):
 | |
|     nlp = English()
 | |
|     ner = nlp.add_pipe("ner")
 | |
|     ner.add_label("ORG")
 | |
|     ner.add_label("LOC")
 | |
|     train_examples = []
 | |
|     for t in train_data:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
 | |
|     optimizer = nlp.initialize()
 | |
|     for i in range(5):
 | |
|         losses = {}
 | |
|         batches = minibatch(train_examples, size=compounding(4.0, 32.0, 1.001))
 | |
|         for batch in batches:
 | |
|             nlp.update(batch, sgd=optimizer, losses=losses)
 | |
| 
 | |
| 
 | |
| def test_split_sents(merged_dict):
 | |
|     nlp = English()
 | |
|     example = Example.from_dict(
 | |
|         Doc(nlp.vocab, words=merged_dict["words"], spaces=merged_dict["spaces"]),
 | |
|         merged_dict,
 | |
|     )
 | |
|     assert example.text == "Hi there everyone It is just me"
 | |
|     split_examples = example.split_sents()
 | |
|     assert len(split_examples) == 2
 | |
|     assert split_examples[0].text == "Hi there everyone "
 | |
|     assert split_examples[1].text == "It is just me"
 | |
|     token_annotation_1 = split_examples[0].to_dict()["token_annotation"]
 | |
|     assert token_annotation_1["ORTH"] == ["Hi", "there", "everyone"]
 | |
|     assert token_annotation_1["TAG"] == ["INTJ", "ADV", "PRON"]
 | |
|     assert token_annotation_1["SENT_START"] == [1, 0, 0]
 | |
|     token_annotation_2 = split_examples[1].to_dict()["token_annotation"]
 | |
|     assert token_annotation_2["ORTH"] == ["It", "is", "just", "me"]
 | |
|     assert token_annotation_2["TAG"] == ["PRON", "AUX", "ADV", "PRON"]
 | |
|     assert token_annotation_2["SENT_START"] == [1, 0, 0, 0]
 | |
| 
 | |
| 
 | |
| def test_alignment():
 | |
|     other_tokens = ["i", "listened", "to", "obama", "'", "s", "podcasts", "."]
 | |
|     spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts", "."]
 | |
|     align = Alignment.from_strings(other_tokens, spacy_tokens)
 | |
|     assert list(align.x2y.lengths) == [1, 1, 1, 1, 1, 1, 1, 1]
 | |
|     assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 6]
 | |
|     assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 1, 1]
 | |
|     assert list(align.y2x.data) == [0, 1, 2, 3, 4, 5, 6, 7]
 | |
| 
 | |
| 
 | |
| def test_alignment_array():
 | |
|     a = AlignmentArray([[0, 1, 2], [3], [], [4, 5, 6, 7], [8, 9]])
 | |
|     assert list(a.data) == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
 | |
|     assert list(a.lengths) == [3, 1, 0, 4, 2]
 | |
|     assert list(a[3]) == [4, 5, 6, 7]
 | |
|     assert list(a[2]) == []
 | |
|     assert list(a[-2]) == [4, 5, 6, 7]
 | |
|     assert list(a[1:4]) == [3, 4, 5, 6, 7]
 | |
|     assert list(a[1:]) == [3, 4, 5, 6, 7, 8, 9]
 | |
|     assert list(a[:3]) == [0, 1, 2, 3]
 | |
|     assert list(a[:]) == list(a.data)
 | |
|     assert list(a[0:0]) == []
 | |
|     assert list(a[3:3]) == []
 | |
|     assert list(a[-1:-1]) == []
 | |
|     with pytest.raises(ValueError, match=r"only supports slicing with a step of 1"):
 | |
|         a[:4:-1]
 | |
|     with pytest.raises(
 | |
|         ValueError, match=r"only supports indexing using an int or a slice"
 | |
|     ):
 | |
|         a[[0, 1, 3]]
 | |
| 
 | |
|     a = AlignmentArray([[], [1, 2, 3], [4, 5]])
 | |
|     assert list(a[0]) == []
 | |
|     assert list(a[0:1]) == []
 | |
|     assert list(a[2]) == [4, 5]
 | |
|     assert list(a[0:2]) == [1, 2, 3]
 | |
| 
 | |
|     a = AlignmentArray([[1, 2, 3], [4, 5], []])
 | |
|     assert list(a[-1]) == []
 | |
|     assert list(a[-2:]) == [4, 5]
 | |
| 
 | |
| 
 | |
| def test_alignment_case_insensitive():
 | |
|     other_tokens = ["I", "listened", "to", "obama", "'", "s", "podcasts", "."]
 | |
|     spacy_tokens = ["i", "listened", "to", "Obama", "'s", "PODCASTS", "."]
 | |
|     align = Alignment.from_strings(other_tokens, spacy_tokens)
 | |
|     assert list(align.x2y.lengths) == [1, 1, 1, 1, 1, 1, 1, 1]
 | |
|     assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 6]
 | |
|     assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 1, 1]
 | |
|     assert list(align.y2x.data) == [0, 1, 2, 3, 4, 5, 6, 7]
 | |
| 
 | |
| 
 | |
| def test_alignment_complex():
 | |
|     other_tokens = ["i listened to", "obama", "'", "s", "podcasts", "."]
 | |
|     spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts."]
 | |
|     align = Alignment.from_strings(other_tokens, spacy_tokens)
 | |
|     assert list(align.x2y.lengths) == [3, 1, 1, 1, 1, 1]
 | |
|     assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 5]
 | |
|     assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2]
 | |
|     assert list(align.y2x.data) == [0, 0, 0, 1, 2, 3, 4, 5]
 | |
| 
 | |
| 
 | |
| def test_alignment_complex_example(en_vocab):
 | |
|     other_tokens = ["i listened to", "obama", "'", "s", "podcasts", "."]
 | |
|     spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts."]
 | |
|     predicted = Doc(
 | |
|         en_vocab, words=other_tokens, spaces=[True, False, False, True, False, False]
 | |
|     )
 | |
|     reference = Doc(
 | |
|         en_vocab, words=spacy_tokens, spaces=[True, True, True, False, True, False]
 | |
|     )
 | |
|     assert predicted.text == "i listened to obama's podcasts."
 | |
|     assert reference.text == "i listened to obama's podcasts."
 | |
|     example = Example(predicted, reference)
 | |
|     align = example.alignment
 | |
|     assert list(align.x2y.lengths) == [3, 1, 1, 1, 1, 1]
 | |
|     assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 5]
 | |
|     assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2]
 | |
|     assert list(align.y2x.data) == [0, 0, 0, 1, 2, 3, 4, 5]
 | |
| 
 | |
| 
 | |
| def test_alignment_different_texts():
 | |
|     other_tokens = ["she", "listened", "to", "obama", "'s", "podcasts", "."]
 | |
|     spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts", "."]
 | |
|     with pytest.raises(ValueError):
 | |
|         Alignment.from_strings(other_tokens, spacy_tokens)
 | |
| 
 | |
| 
 | |
| def test_alignment_spaces(en_vocab):
 | |
|     # single leading whitespace
 | |
|     other_tokens = [" ", "i listened to", "obama", "'", "s", "podcasts", "."]
 | |
|     spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts."]
 | |
|     align = Alignment.from_strings(other_tokens, spacy_tokens)
 | |
|     assert list(align.x2y.lengths) == [0, 3, 1, 1, 1, 1, 1]
 | |
|     assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 5]
 | |
|     assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2]
 | |
|     assert list(align.y2x.data) == [1, 1, 1, 2, 3, 4, 5, 6]
 | |
| 
 | |
|     # multiple leading whitespace tokens
 | |
|     other_tokens = [" ", " ", "i listened to", "obama", "'", "s", "podcasts", "."]
 | |
|     spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts."]
 | |
|     align = Alignment.from_strings(other_tokens, spacy_tokens)
 | |
|     assert list(align.x2y.lengths) == [0, 0, 3, 1, 1, 1, 1, 1]
 | |
|     assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 5]
 | |
|     assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2]
 | |
|     assert list(align.y2x.data) == [2, 2, 2, 3, 4, 5, 6, 7]
 | |
| 
 | |
|     # both with leading whitespace, not identical
 | |
|     other_tokens = [" ", " ", "i listened to", "obama", "'", "s", "podcasts", "."]
 | |
|     spacy_tokens = [" ", "i", "listened", "to", "obama", "'s", "podcasts."]
 | |
|     align = Alignment.from_strings(other_tokens, spacy_tokens)
 | |
|     assert list(align.x2y.lengths) == [1, 0, 3, 1, 1, 1, 1, 1]
 | |
|     assert list(align.x2y.data) == [0, 1, 2, 3, 4, 5, 5, 6, 6]
 | |
|     assert list(align.y2x.lengths) == [1, 1, 1, 1, 1, 2, 2]
 | |
|     assert list(align.y2x.data) == [0, 2, 2, 2, 3, 4, 5, 6, 7]
 | |
| 
 | |
|     # same leading whitespace, different tokenization
 | |
|     other_tokens = [" ", " ", "i listened to", "obama", "'", "s", "podcasts", "."]
 | |
|     spacy_tokens = ["  ", "i", "listened", "to", "obama", "'s", "podcasts."]
 | |
|     align = Alignment.from_strings(other_tokens, spacy_tokens)
 | |
|     assert list(align.x2y.lengths) == [1, 1, 3, 1, 1, 1, 1, 1]
 | |
|     assert list(align.x2y.data) == [0, 0, 1, 2, 3, 4, 5, 5, 6, 6]
 | |
|     assert list(align.y2x.lengths) == [2, 1, 1, 1, 1, 2, 2]
 | |
|     assert list(align.y2x.data) == [0, 1, 2, 2, 2, 3, 4, 5, 6, 7]
 | |
| 
 | |
|     # only one with trailing whitespace
 | |
|     other_tokens = ["i listened to", "obama", "'", "s", "podcasts", ".", " "]
 | |
|     spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts."]
 | |
|     align = Alignment.from_strings(other_tokens, spacy_tokens)
 | |
|     assert list(align.x2y.lengths) == [3, 1, 1, 1, 1, 1, 0]
 | |
|     assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 5]
 | |
|     assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2]
 | |
|     assert list(align.y2x.data) == [0, 0, 0, 1, 2, 3, 4, 5]
 | |
| 
 | |
|     # different trailing whitespace
 | |
|     other_tokens = ["i listened to", "obama", "'", "s", "podcasts", ".", " ", " "]
 | |
|     spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts.", " "]
 | |
|     align = Alignment.from_strings(other_tokens, spacy_tokens)
 | |
|     assert list(align.x2y.lengths) == [3, 1, 1, 1, 1, 1, 1, 0]
 | |
|     assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 5, 6]
 | |
|     assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2, 1]
 | |
|     assert list(align.y2x.data) == [0, 0, 0, 1, 2, 3, 4, 5, 6]
 | |
| 
 | |
|     # same trailing whitespace, different tokenization
 | |
|     other_tokens = ["i listened to", "obama", "'", "s", "podcasts", ".", " ", " "]
 | |
|     spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts.", "  "]
 | |
|     align = Alignment.from_strings(other_tokens, spacy_tokens)
 | |
|     assert list(align.x2y.lengths) == [3, 1, 1, 1, 1, 1, 1, 1]
 | |
|     assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 5, 6, 6]
 | |
|     assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2, 2]
 | |
|     assert list(align.y2x.data) == [0, 0, 0, 1, 2, 3, 4, 5, 6, 7]
 | |
| 
 | |
|     # differing whitespace is allowed
 | |
|     other_tokens = ["a", " \n ", "b", "c"]
 | |
|     spacy_tokens = ["a", "b", " ", "c"]
 | |
|     align = Alignment.from_strings(other_tokens, spacy_tokens)
 | |
|     assert list(align.x2y.data) == [0, 1, 3]
 | |
|     assert list(align.y2x.data) == [0, 2, 3]
 | |
| 
 | |
|     # other differences in whitespace are allowed
 | |
|     other_tokens = [" ", "a"]
 | |
|     spacy_tokens = ["  ", "a", " "]
 | |
|     align = Alignment.from_strings(other_tokens, spacy_tokens)
 | |
| 
 | |
|     other_tokens = ["a", " "]
 | |
|     spacy_tokens = ["a", "  "]
 | |
|     align = Alignment.from_strings(other_tokens, spacy_tokens)
 | |
| 
 | |
| 
 | |
| def test_retokenized_docs(doc):
 | |
|     a = doc.to_array(["TAG"])
 | |
|     doc1 = Doc(doc.vocab, words=[t.text for t in doc]).from_array(["TAG"], a)
 | |
|     doc2 = Doc(doc.vocab, words=[t.text for t in doc]).from_array(["TAG"], a)
 | |
|     example = Example(doc1, doc2)
 | |
|     # fmt: off
 | |
|     expected1 = ["Sarah", "'s", "sister", "flew", "to", "Silicon", "Valley", "via", "London", "."]
 | |
|     expected2 = [None, "sister", "flew", "to", None, "via", "London", "."]
 | |
|     # fmt: on
 | |
|     assert example.get_aligned("ORTH", as_string=True) == expected1
 | |
|     with doc1.retokenize() as retokenizer:
 | |
|         retokenizer.merge(doc1[0:2])
 | |
|         retokenizer.merge(doc1[5:7])
 | |
|     assert example.get_aligned("ORTH", as_string=True) == expected2
 | |
| 
 | |
| 
 | |
| def test_training_before_update(doc):
 | |
|     def before_update(nlp, args):
 | |
|         assert args["step"] == 0
 | |
|         assert args["epoch"] == 1
 | |
| 
 | |
|         # Raise an error here as the rest of the loop
 | |
|         # will not run to completion due to uninitialized
 | |
|         # models.
 | |
|         raise ValueError("ran_before_update")
 | |
| 
 | |
|     def generate_batch():
 | |
|         yield 1, [Example(doc, doc)]
 | |
| 
 | |
|     nlp = spacy.blank("en")
 | |
|     nlp.add_pipe("tagger")
 | |
|     optimizer = Adam()
 | |
|     generator = train_while_improving(
 | |
|         nlp,
 | |
|         optimizer,
 | |
|         generate_batch(),
 | |
|         lambda: None,
 | |
|         dropout=0.1,
 | |
|         eval_frequency=100,
 | |
|         accumulate_gradient=10,
 | |
|         patience=10,
 | |
|         max_steps=100,
 | |
|         exclude=[],
 | |
|         annotating_components=[],
 | |
|         before_update=before_update,
 | |
|     )
 | |
| 
 | |
|     with pytest.raises(ValueError, match="ran_before_update"):
 | |
|         for _ in generator:
 | |
|             pass
 |