mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 02:06:31 +03:00
87 lines
1.8 KiB
Python
87 lines
1.8 KiB
Python
# coding: utf8
|
|
from __future__ import unicode_literals
|
|
|
|
import pytest
|
|
from spacy._ml import Tok2Vec
|
|
from spacy.vocab import Vocab
|
|
from spacy.syntax.arc_eager import ArcEager
|
|
from spacy.syntax.nn_parser import Parser
|
|
from spacy.tokens.doc import Doc
|
|
from spacy.gold import GoldParse
|
|
|
|
|
|
@pytest.fixture
|
|
def vocab():
|
|
return Vocab()
|
|
|
|
|
|
@pytest.fixture
|
|
def arc_eager(vocab):
|
|
actions = ArcEager.get_actions(left_labels=["L"], right_labels=["R"])
|
|
return ArcEager(vocab.strings, actions)
|
|
|
|
|
|
@pytest.fixture
|
|
def tok2vec():
|
|
return Tok2Vec(8, 100)
|
|
|
|
|
|
@pytest.fixture
|
|
def parser(vocab, arc_eager):
|
|
return Parser(vocab, moves=arc_eager, model=None)
|
|
|
|
|
|
@pytest.fixture
|
|
def model(arc_eager, tok2vec):
|
|
return Parser.Model(arc_eager.n_moves, token_vector_width=tok2vec.nO)[0]
|
|
|
|
|
|
@pytest.fixture
|
|
def doc(vocab):
|
|
return Doc(vocab, words=["a", "b", "c"])
|
|
|
|
|
|
@pytest.fixture
|
|
def gold(doc):
|
|
return GoldParse(doc, heads=[1, 1, 1], deps=["L", "ROOT", "R"])
|
|
|
|
|
|
def test_can_init_nn_parser(parser):
|
|
assert parser.model is None
|
|
|
|
|
|
def test_build_model(parser):
|
|
parser.model = Parser.Model(parser.moves.n_moves, hist_size=0)[0]
|
|
assert parser.model is not None
|
|
|
|
|
|
def test_predict_doc(parser, tok2vec, model, doc):
|
|
doc.tensor = tok2vec([doc])[0]
|
|
parser.model = model
|
|
parser(doc)
|
|
|
|
|
|
def test_update_doc(parser, model, doc, gold):
|
|
parser.model = model
|
|
|
|
def optimize(weights, gradient, key=None):
|
|
weights -= 0.001 * gradient
|
|
|
|
parser.update([doc], [gold], sgd=optimize)
|
|
|
|
|
|
@pytest.mark.xfail
|
|
def test_predict_doc_beam(parser, model, doc):
|
|
parser.model = model
|
|
parser(doc, beam_width=32, beam_density=0.001)
|
|
|
|
|
|
@pytest.mark.xfail
|
|
def test_update_doc_beam(parser, model, doc, gold):
|
|
parser.model = model
|
|
|
|
def optimize(weights, gradient, key=None):
|
|
weights -= 0.001 * gradient
|
|
|
|
parser.update_beam([doc], [gold], sgd=optimize)
|