mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			268 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			268 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""
 | 
						|
This example shows how to use an LSTM sentiment classification model trained
 | 
						|
using Keras in spaCy. spaCy splits the document into sentences, and each
 | 
						|
sentence is classified using the LSTM. The scores for the sentences are then
 | 
						|
aggregated to give the document score. This kind of hierarchical model is quite
 | 
						|
difficult in "pure" Keras or Tensorflow, but it's very effective. The Keras
 | 
						|
example on this dataset performs quite poorly, because it cuts off the documents
 | 
						|
so that they're a fixed size. This hurts review accuracy a lot, because people
 | 
						|
often summarise their rating in the final sentence
 | 
						|
 | 
						|
Prerequisites:
 | 
						|
spacy download en_vectors_web_lg
 | 
						|
pip install keras==2.0.9
 | 
						|
 | 
						|
Compatible with: spaCy v2.0.0+
 | 
						|
"""
 | 
						|
 | 
						|
import plac
 | 
						|
import random
 | 
						|
import pathlib
 | 
						|
import cytoolz
 | 
						|
import numpy
 | 
						|
from keras.models import Sequential, model_from_json
 | 
						|
from keras.layers import LSTM, Dense, Embedding, Bidirectional
 | 
						|
from keras.layers import TimeDistributed
 | 
						|
from keras.optimizers import Adam
 | 
						|
import thinc.extra.datasets
 | 
						|
from spacy.compat import pickle
 | 
						|
import spacy
 | 
						|
 | 
						|
 | 
						|
class SentimentAnalyser(object):
 | 
						|
    @classmethod
 | 
						|
    def load(cls, path, nlp, max_length=100):
 | 
						|
        with (path / "config.json").open() as file_:
 | 
						|
            model = model_from_json(file_.read())
 | 
						|
        with (path / "model").open("rb") as file_:
 | 
						|
            lstm_weights = pickle.load(file_)
 | 
						|
        embeddings = get_embeddings(nlp.vocab)
 | 
						|
        model.set_weights([embeddings] + lstm_weights)
 | 
						|
        return cls(model, max_length=max_length)
 | 
						|
 | 
						|
    def __init__(self, model, max_length=100):
 | 
						|
        self._model = model
 | 
						|
        self.max_length = max_length
 | 
						|
 | 
						|
    def __call__(self, doc):
 | 
						|
        X = get_features([doc], self.max_length)
 | 
						|
        y = self._model.predict(X)
 | 
						|
        self.set_sentiment(doc, y)
 | 
						|
 | 
						|
    def pipe(self, docs, batch_size=1000):
 | 
						|
        for minibatch in cytoolz.partition_all(batch_size, docs):
 | 
						|
            minibatch = list(minibatch)
 | 
						|
            sentences = []
 | 
						|
            for doc in minibatch:
 | 
						|
                sentences.extend(doc.sents)
 | 
						|
            Xs = get_features(sentences, self.max_length)
 | 
						|
            ys = self._model.predict(Xs)
 | 
						|
            for sent, label in zip(sentences, ys):
 | 
						|
                sent.doc.sentiment += label - 0.5
 | 
						|
            for doc in minibatch:
 | 
						|
                yield doc
 | 
						|
 | 
						|
    def set_sentiment(self, doc, y):
 | 
						|
        doc.sentiment = float(y[0])
 | 
						|
        # Sentiment has a native slot for a single float.
 | 
						|
        # For arbitrary data storage, there's:
 | 
						|
        # doc.user_data['my_data'] = y
 | 
						|
 | 
						|
 | 
						|
def get_labelled_sentences(docs, doc_labels):
 | 
						|
    labels = []
 | 
						|
    sentences = []
 | 
						|
    for doc, y in zip(docs, doc_labels):
 | 
						|
        for sent in doc.sents:
 | 
						|
            sentences.append(sent)
 | 
						|
            labels.append(y)
 | 
						|
    return sentences, numpy.asarray(labels, dtype="int32")
 | 
						|
 | 
						|
 | 
						|
def get_features(docs, max_length):
 | 
						|
    docs = list(docs)
 | 
						|
    Xs = numpy.zeros((len(docs), max_length), dtype="int32")
 | 
						|
    for i, doc in enumerate(docs):
 | 
						|
        j = 0
 | 
						|
        for token in doc:
 | 
						|
            vector_id = token.vocab.vectors.find(key=token.orth)
 | 
						|
            if vector_id >= 0:
 | 
						|
                Xs[i, j] = vector_id
 | 
						|
            else:
 | 
						|
                Xs[i, j] = 0
 | 
						|
            j += 1
 | 
						|
            if j >= max_length:
 | 
						|
                break
 | 
						|
    return Xs
 | 
						|
 | 
						|
 | 
						|
def train(
 | 
						|
    train_texts,
 | 
						|
    train_labels,
 | 
						|
    dev_texts,
 | 
						|
    dev_labels,
 | 
						|
    lstm_shape,
 | 
						|
    lstm_settings,
 | 
						|
    lstm_optimizer,
 | 
						|
    batch_size=100,
 | 
						|
    nb_epoch=5,
 | 
						|
    by_sentence=True,
 | 
						|
):
 | 
						|
 | 
						|
    print("Loading spaCy")
 | 
						|
    nlp = spacy.load("en_vectors_web_lg")
 | 
						|
    nlp.add_pipe(nlp.create_pipe("sentencizer"))
 | 
						|
    embeddings = get_embeddings(nlp.vocab)
 | 
						|
    model = compile_lstm(embeddings, lstm_shape, lstm_settings)
 | 
						|
 | 
						|
    print("Parsing texts...")
 | 
						|
    train_docs = list(nlp.pipe(train_texts))
 | 
						|
    dev_docs = list(nlp.pipe(dev_texts))
 | 
						|
    if by_sentence:
 | 
						|
        train_docs, train_labels = get_labelled_sentences(train_docs, train_labels)
 | 
						|
        dev_docs, dev_labels = get_labelled_sentences(dev_docs, dev_labels)
 | 
						|
 | 
						|
    train_X = get_features(train_docs, lstm_shape["max_length"])
 | 
						|
    dev_X = get_features(dev_docs, lstm_shape["max_length"])
 | 
						|
    model.fit(
 | 
						|
        train_X,
 | 
						|
        train_labels,
 | 
						|
        validation_data=(dev_X, dev_labels),
 | 
						|
        epochs=nb_epoch,
 | 
						|
        batch_size=batch_size,
 | 
						|
    )
 | 
						|
    return model
 | 
						|
 | 
						|
 | 
						|
def compile_lstm(embeddings, shape, settings):
 | 
						|
    model = Sequential()
 | 
						|
    model.add(
 | 
						|
        Embedding(
 | 
						|
            embeddings.shape[0],
 | 
						|
            embeddings.shape[1],
 | 
						|
            input_length=shape["max_length"],
 | 
						|
            trainable=False,
 | 
						|
            weights=[embeddings],
 | 
						|
            mask_zero=True,
 | 
						|
        )
 | 
						|
    )
 | 
						|
    model.add(TimeDistributed(Dense(shape["nr_hidden"], use_bias=False)))
 | 
						|
    model.add(
 | 
						|
        Bidirectional(
 | 
						|
            LSTM(
 | 
						|
                shape["nr_hidden"],
 | 
						|
                recurrent_dropout=settings["dropout"],
 | 
						|
                dropout=settings["dropout"],
 | 
						|
            )
 | 
						|
        )
 | 
						|
    )
 | 
						|
    model.add(Dense(shape["nr_class"], activation="sigmoid"))
 | 
						|
    model.compile(
 | 
						|
        optimizer=Adam(lr=settings["lr"]),
 | 
						|
        loss="binary_crossentropy",
 | 
						|
        metrics=["accuracy"],
 | 
						|
    )
 | 
						|
    return model
 | 
						|
 | 
						|
 | 
						|
def get_embeddings(vocab):
 | 
						|
    return vocab.vectors.data
 | 
						|
 | 
						|
 | 
						|
def evaluate(model_dir, texts, labels, max_length=100):
 | 
						|
    nlp = spacy.load("en_vectors_web_lg")
 | 
						|
    nlp.add_pipe(nlp.create_pipe("sentencizer"))
 | 
						|
    nlp.add_pipe(SentimentAnalyser.load(model_dir, nlp, max_length=max_length))
 | 
						|
 | 
						|
    correct = 0
 | 
						|
    i = 0
 | 
						|
    for doc in nlp.pipe(texts, batch_size=1000):
 | 
						|
        correct += bool(doc.sentiment >= 0.5) == bool(labels[i])
 | 
						|
        i += 1
 | 
						|
    return float(correct) / i
 | 
						|
 | 
						|
 | 
						|
def read_data(data_dir, limit=0):
 | 
						|
    examples = []
 | 
						|
    for subdir, label in (("pos", 1), ("neg", 0)):
 | 
						|
        for filename in (data_dir / subdir).iterdir():
 | 
						|
            with filename.open() as file_:
 | 
						|
                text = file_.read()
 | 
						|
            examples.append((text, label))
 | 
						|
    random.shuffle(examples)
 | 
						|
    if limit >= 1:
 | 
						|
        examples = examples[:limit]
 | 
						|
    return zip(*examples)  # Unzips into two lists
 | 
						|
 | 
						|
 | 
						|
@plac.annotations(
 | 
						|
    train_dir=("Location of training file or directory"),
 | 
						|
    dev_dir=("Location of development file or directory"),
 | 
						|
    model_dir=("Location of output model directory",),
 | 
						|
    is_runtime=("Demonstrate run-time usage", "flag", "r", bool),
 | 
						|
    nr_hidden=("Number of hidden units", "option", "H", int),
 | 
						|
    max_length=("Maximum sentence length", "option", "L", int),
 | 
						|
    dropout=("Dropout", "option", "d", float),
 | 
						|
    learn_rate=("Learn rate", "option", "e", float),
 | 
						|
    nb_epoch=("Number of training epochs", "option", "i", int),
 | 
						|
    batch_size=("Size of minibatches for training LSTM", "option", "b", int),
 | 
						|
    nr_examples=("Limit to N examples", "option", "n", int),
 | 
						|
)
 | 
						|
def main(
 | 
						|
    model_dir=None,
 | 
						|
    train_dir=None,
 | 
						|
    dev_dir=None,
 | 
						|
    is_runtime=False,
 | 
						|
    nr_hidden=64,
 | 
						|
    max_length=100,  # Shape
 | 
						|
    dropout=0.5,
 | 
						|
    learn_rate=0.001,  # General NN config
 | 
						|
    nb_epoch=5,
 | 
						|
    batch_size=256,
 | 
						|
    nr_examples=-1,
 | 
						|
):  # Training params
 | 
						|
    if model_dir is not None:
 | 
						|
        model_dir = pathlib.Path(model_dir)
 | 
						|
    if train_dir is None or dev_dir is None:
 | 
						|
        imdb_data = thinc.extra.datasets.imdb()
 | 
						|
    if is_runtime:
 | 
						|
        if dev_dir is None:
 | 
						|
            dev_texts, dev_labels = zip(*imdb_data[1])
 | 
						|
        else:
 | 
						|
            dev_texts, dev_labels = read_data(dev_dir)
 | 
						|
        acc = evaluate(model_dir, dev_texts, dev_labels, max_length=max_length)
 | 
						|
        print(acc)
 | 
						|
    else:
 | 
						|
        if train_dir is None:
 | 
						|
            train_texts, train_labels = zip(*imdb_data[0])
 | 
						|
        else:
 | 
						|
            print("Read data")
 | 
						|
            train_texts, train_labels = read_data(train_dir, limit=nr_examples)
 | 
						|
        if dev_dir is None:
 | 
						|
            dev_texts, dev_labels = zip(*imdb_data[1])
 | 
						|
        else:
 | 
						|
            dev_texts, dev_labels = read_data(dev_dir, imdb_data, limit=nr_examples)
 | 
						|
        train_labels = numpy.asarray(train_labels, dtype="int32")
 | 
						|
        dev_labels = numpy.asarray(dev_labels, dtype="int32")
 | 
						|
        lstm = train(
 | 
						|
            train_texts,
 | 
						|
            train_labels,
 | 
						|
            dev_texts,
 | 
						|
            dev_labels,
 | 
						|
            {"nr_hidden": nr_hidden, "max_length": max_length, "nr_class": 1},
 | 
						|
            {"dropout": dropout, "lr": learn_rate},
 | 
						|
            {},
 | 
						|
            nb_epoch=nb_epoch,
 | 
						|
            batch_size=batch_size,
 | 
						|
        )
 | 
						|
        weights = lstm.get_weights()
 | 
						|
        if model_dir is not None:
 | 
						|
            with (model_dir / "model").open("wb") as file_:
 | 
						|
                pickle.dump(weights[1:], file_)
 | 
						|
            with (model_dir / "config.json").open("w") as file_:
 | 
						|
                file_.write(lstm.to_json())
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    plac.call(main)
 |