mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 09:14:32 +03:00
140 lines
5.1 KiB
Python
140 lines
5.1 KiB
Python
from __future__ import unicode_literals
|
|
import plac
|
|
import json
|
|
import random
|
|
import pathlib
|
|
|
|
from spacy.tokens import Doc
|
|
from spacy.syntax.nonproj import PseudoProjectivity
|
|
from spacy.language import Language
|
|
from spacy.gold import GoldParse
|
|
from spacy.tagger import Tagger
|
|
from spacy.pipeline import DependencyParser, BeamDependencyParser
|
|
from spacy.syntax.parser import get_templates
|
|
from spacy.syntax.arc_eager import ArcEager
|
|
from spacy.scorer import Scorer
|
|
from spacy.language_data.tag_map import TAG_MAP as DEFAULT_TAG_MAP
|
|
import spacy.attrs
|
|
import io
|
|
|
|
|
|
def read_conllx(loc, n=0):
|
|
with io.open(loc, 'r', encoding='utf8') as file_:
|
|
text = file_.read()
|
|
i = 0
|
|
for sent in text.strip().split('\n\n'):
|
|
lines = sent.strip().split('\n')
|
|
if lines:
|
|
while lines[0].startswith('#'):
|
|
lines.pop(0)
|
|
tokens = []
|
|
for line in lines:
|
|
id_, word, lemma, pos, tag, morph, head, dep, _1, \
|
|
_2 = line.split('\t')
|
|
if '-' in id_ or '.' in id_:
|
|
continue
|
|
try:
|
|
id_ = int(id_) - 1
|
|
head = (int(head) - 1) if head != '0' else id_
|
|
dep = 'ROOT' if dep == 'root' else dep
|
|
tokens.append((id_, word, tag, head, dep, 'O'))
|
|
except:
|
|
print(line)
|
|
raise
|
|
tuples = [list(t) for t in zip(*tokens)]
|
|
yield (None, [[tuples, []]])
|
|
i += 1
|
|
if n >= 1 and i >= n:
|
|
break
|
|
|
|
|
|
def score_model(vocab, tagger, parser, gold_docs, verbose=False):
|
|
scorer = Scorer()
|
|
for _, gold_doc in gold_docs:
|
|
for (ids, words, tags, heads, deps, entities), _ in gold_doc:
|
|
doc = Doc(vocab, words=words)
|
|
tagger(doc)
|
|
parser(doc)
|
|
PseudoProjectivity.deprojectivize(doc)
|
|
gold = GoldParse(doc, tags=tags, heads=heads, deps=deps)
|
|
scorer.score(doc, gold, verbose=verbose)
|
|
return scorer
|
|
|
|
|
|
def main(lang_name, train_loc, dev_loc, model_dir, clusters_loc=None):
|
|
LangClass = spacy.util.get_lang_class(lang_name)
|
|
train_sents = list(read_conllx(train_loc))
|
|
train_sents = PseudoProjectivity.preprocess_training_data(train_sents)
|
|
|
|
actions = ArcEager.get_actions(gold_parses=train_sents)
|
|
features = get_templates('basic')
|
|
|
|
model_dir = pathlib.Path(model_dir)
|
|
if not model_dir.exists():
|
|
model_dir.mkdir()
|
|
if not (model_dir / 'deps').exists():
|
|
(model_dir / 'deps').mkdir()
|
|
if not (model_dir / 'pos').exists():
|
|
(model_dir / 'pos').mkdir()
|
|
with (model_dir / 'deps' / 'config.json').open('wb') as file_:
|
|
file_.write(
|
|
json.dumps(
|
|
{'pseudoprojective': True, 'labels': actions, 'features': features}).encode('utf8'))
|
|
|
|
vocab = LangClass.Defaults.create_vocab()
|
|
if not (model_dir / 'vocab').exists():
|
|
(model_dir / 'vocab').mkdir()
|
|
else:
|
|
if (model_dir / 'vocab' / 'strings.json').exists():
|
|
with (model_dir / 'vocab' / 'strings.json').open() as file_:
|
|
vocab.strings.load(file_)
|
|
if (model_dir / 'vocab' / 'lexemes.bin').exists():
|
|
vocab.load_lexemes(model_dir / 'vocab' / 'lexemes.bin')
|
|
|
|
if clusters_loc is not None:
|
|
clusters_loc = pathlib.Path(clusters_loc)
|
|
with clusters_loc.open() as file_:
|
|
for line in file_:
|
|
try:
|
|
cluster, word, freq = line.split()
|
|
except ValueError:
|
|
continue
|
|
lex = vocab[word]
|
|
lex.cluster = int(cluster[::-1], 2)
|
|
# Populate vocab
|
|
for _, doc_sents in train_sents:
|
|
for (ids, words, tags, heads, deps, ner), _ in doc_sents:
|
|
for word in words:
|
|
_ = vocab[word]
|
|
for dep in deps:
|
|
_ = vocab[dep]
|
|
for tag in tags:
|
|
_ = vocab[tag]
|
|
if vocab.morphology.tag_map:
|
|
for tag in tags:
|
|
assert tag in vocab.morphology.tag_map, repr(tag)
|
|
tagger = Tagger(vocab)
|
|
parser = DependencyParser(vocab, actions=actions, features=features, L1=0.0)
|
|
|
|
for itn in range(30):
|
|
loss = 0.
|
|
for _, doc_sents in train_sents:
|
|
for (ids, words, tags, heads, deps, ner), _ in doc_sents:
|
|
doc = Doc(vocab, words=words)
|
|
gold = GoldParse(doc, tags=tags, heads=heads, deps=deps)
|
|
tagger(doc)
|
|
loss += parser.update(doc, gold, itn=itn)
|
|
doc = Doc(vocab, words=words)
|
|
tagger.update(doc, gold)
|
|
random.shuffle(train_sents)
|
|
scorer = score_model(vocab, tagger, parser, read_conllx(dev_loc))
|
|
print('%d:\t%.3f\t%.3f\t%.3f' % (itn, loss, scorer.uas, scorer.tags_acc))
|
|
nlp = LangClass(vocab=vocab, tagger=tagger, parser=parser)
|
|
nlp.end_training(model_dir)
|
|
scorer = score_model(vocab, tagger, parser, read_conllx(dev_loc))
|
|
print('%d:\t%.3f\t%.3f\t%.3f' % (itn, scorer.uas, scorer.las, scorer.tags_acc))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
plac.call(main)
|