mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			73 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			73 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| '''Test the ability to add a label to a (potentially trained) parsing model.'''
 | |
| from __future__ import unicode_literals
 | |
| import pytest
 | |
| import numpy.random
 | |
| from thinc.neural.optimizers import Adam
 | |
| from thinc.neural.ops import NumpyOps
 | |
| 
 | |
| from ...attrs import NORM
 | |
| from ...gold import GoldParse
 | |
| from ...vocab import Vocab
 | |
| from ...tokens import Doc
 | |
| from ...pipeline import DependencyParser
 | |
| 
 | |
| numpy.random.seed(0)
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def vocab():
 | |
|     return Vocab(lex_attr_getters={NORM: lambda s: s})
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def parser(vocab):
 | |
|     parser = DependencyParser(vocab)
 | |
|     parser.cfg['token_vector_width'] = 8
 | |
|     parser.cfg['hidden_width'] = 30
 | |
|     parser.cfg['hist_size'] = 0
 | |
|     parser.add_label('left')
 | |
|     parser.begin_training([], **parser.cfg)
 | |
|     sgd = Adam(NumpyOps(), 0.001)
 | |
| 
 | |
|     for i in range(10):
 | |
|         losses = {}
 | |
|         doc = Doc(vocab, words=['a', 'b', 'c', 'd'])
 | |
|         gold = GoldParse(doc, heads=[1, 1, 3, 3],
 | |
|                 deps=['left', 'ROOT', 'left', 'ROOT'])
 | |
|         parser.update([doc], [gold], sgd=sgd, losses=losses)
 | |
|     return parser
 | |
| 
 | |
| def test_init_parser(parser):
 | |
|     pass
 | |
| 
 | |
| # TODO: This is flakey, because it depends on what the parser first learns.
 | |
| @pytest.mark.xfail
 | |
| def test_add_label(parser):
 | |
|     doc = Doc(parser.vocab, words=['a', 'b', 'c', 'd'])
 | |
|     doc = parser(doc)
 | |
|     assert doc[0].head.i == 1
 | |
|     assert doc[0].dep_ == 'left'
 | |
|     assert doc[1].head.i == 1
 | |
|     assert doc[2].head.i == 3
 | |
|     assert doc[2].head.i == 3
 | |
|     parser.add_label('right')
 | |
|     doc = Doc(parser.vocab, words=['a', 'b', 'c', 'd'])
 | |
|     doc = parser(doc)
 | |
|     assert doc[0].head.i == 1
 | |
|     assert doc[0].dep_ == 'left'
 | |
|     assert doc[1].head.i == 1
 | |
|     assert doc[2].head.i == 3
 | |
|     assert doc[2].head.i == 3
 | |
|     sgd = Adam(NumpyOps(), 0.001)
 | |
|     for i in range(10):
 | |
|         losses = {}
 | |
|         doc = Doc(parser.vocab, words=['a', 'b', 'c', 'd'])
 | |
|         gold = GoldParse(doc, heads=[1, 1, 3, 3],
 | |
|                 deps=['right', 'ROOT', 'left', 'ROOT'])
 | |
|         parser.update([doc], [gold], sgd=sgd, losses=losses)
 | |
|     doc = Doc(parser.vocab, words=['a', 'b', 'c', 'd'])
 | |
|     doc = parser(doc)
 | |
|     assert doc[0].dep_ == 'right'
 | |
|     assert doc[2].dep_ == 'left'
 | |
|  
 |