mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 01:04:34 +03:00
28de85737f
* add label smoothing * use True/False instead of floats * add entropy to debug data * formatting * docs * change test to check difference in distributions * Update website/docs/api/tagger.mdx Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Update spacy/pipeline/tagger.pyx Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * bool -> float * update docs * fix seed * black * update tests to use label_smoothing = 0.0 * set default to 0.0, update quickstart * Update spacy/pipeline/tagger.pyx Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * update morphologizer, tagger test * fix morph docs * add url to docs --------- Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
225 lines
7.8 KiB
Python
225 lines
7.8 KiB
Python
import pytest
|
|
from numpy.testing import assert_equal, assert_almost_equal
|
|
|
|
from spacy import util
|
|
from spacy.training import Example
|
|
from spacy.lang.en import English
|
|
from spacy.language import Language
|
|
from spacy.tests.util import make_tempdir
|
|
from spacy.morphology import Morphology
|
|
from spacy.attrs import MORPH
|
|
from spacy.tokens import Doc
|
|
|
|
|
|
def test_label_types():
|
|
nlp = Language()
|
|
morphologizer = nlp.add_pipe("morphologizer")
|
|
morphologizer.add_label("Feat=A")
|
|
with pytest.raises(ValueError):
|
|
morphologizer.add_label(9)
|
|
|
|
|
|
TAGS = ["Feat=N", "Feat=V", "Feat=J"]
|
|
|
|
TRAIN_DATA = [
|
|
(
|
|
"I like green eggs",
|
|
{
|
|
"morphs": ["Feat=N", "Feat=V", "Feat=J", "Feat=N"],
|
|
"pos": ["NOUN", "VERB", "ADJ", "NOUN"],
|
|
},
|
|
),
|
|
# test combinations of morph+POS
|
|
("Eat blue ham", {"morphs": ["Feat=V", "", ""], "pos": ["", "ADJ", ""]}),
|
|
]
|
|
|
|
|
|
def test_label_smoothing():
|
|
nlp = Language()
|
|
morph_no_ls = nlp.add_pipe("morphologizer", "no_label_smoothing")
|
|
morph_ls = nlp.add_pipe(
|
|
"morphologizer", "label_smoothing", config=dict(label_smoothing=0.05)
|
|
)
|
|
train_examples = []
|
|
losses = {}
|
|
for tag in TAGS:
|
|
morph_no_ls.add_label(tag)
|
|
morph_ls.add_label(tag)
|
|
for t in TRAIN_DATA:
|
|
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
|
|
|
nlp.initialize(get_examples=lambda: train_examples)
|
|
tag_scores, bp_tag_scores = morph_ls.model.begin_update(
|
|
[eg.predicted for eg in train_examples]
|
|
)
|
|
no_ls_grads = morph_no_ls.get_loss(train_examples, tag_scores)[1][0]
|
|
ls_grads = morph_ls.get_loss(train_examples, tag_scores)[1][0]
|
|
assert_almost_equal(ls_grads / no_ls_grads, 0.94285715)
|
|
|
|
|
|
def test_no_label():
|
|
nlp = Language()
|
|
nlp.add_pipe("morphologizer")
|
|
with pytest.raises(ValueError):
|
|
nlp.initialize()
|
|
|
|
|
|
def test_implicit_label():
|
|
nlp = Language()
|
|
nlp.add_pipe("morphologizer")
|
|
train_examples = []
|
|
for t in TRAIN_DATA:
|
|
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
|
nlp.initialize(get_examples=lambda: train_examples)
|
|
|
|
|
|
def test_no_resize():
|
|
nlp = Language()
|
|
morphologizer = nlp.add_pipe("morphologizer")
|
|
morphologizer.add_label("POS" + Morphology.FIELD_SEP + "NOUN")
|
|
morphologizer.add_label("POS" + Morphology.FIELD_SEP + "VERB")
|
|
nlp.initialize()
|
|
# this throws an error because the morphologizer can't be resized after initialization
|
|
with pytest.raises(ValueError):
|
|
morphologizer.add_label("POS" + Morphology.FIELD_SEP + "ADJ")
|
|
|
|
|
|
def test_initialize_examples():
|
|
nlp = Language()
|
|
morphologizer = nlp.add_pipe("morphologizer")
|
|
morphologizer.add_label("POS" + Morphology.FIELD_SEP + "NOUN")
|
|
train_examples = []
|
|
for t in TRAIN_DATA:
|
|
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
|
# you shouldn't really call this more than once, but for testing it should be fine
|
|
nlp.initialize()
|
|
nlp.initialize(get_examples=lambda: train_examples)
|
|
with pytest.raises(TypeError):
|
|
nlp.initialize(get_examples=lambda: None)
|
|
with pytest.raises(TypeError):
|
|
nlp.initialize(get_examples=train_examples)
|
|
|
|
|
|
def test_overfitting_IO():
|
|
# Simple test to try and quickly overfit the morphologizer - ensuring the ML models work correctly
|
|
nlp = English()
|
|
nlp.add_pipe("morphologizer")
|
|
train_examples = []
|
|
for inst in TRAIN_DATA:
|
|
train_examples.append(Example.from_dict(nlp.make_doc(inst[0]), inst[1]))
|
|
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
|
|
|
for i in range(50):
|
|
losses = {}
|
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
|
assert losses["morphologizer"] < 0.00001
|
|
|
|
# test the trained model
|
|
test_text = "I like blue ham"
|
|
doc = nlp(test_text)
|
|
gold_morphs = ["Feat=N", "Feat=V", "", ""]
|
|
gold_pos_tags = ["NOUN", "VERB", "ADJ", ""]
|
|
assert [str(t.morph) for t in doc] == gold_morphs
|
|
assert [t.pos_ for t in doc] == gold_pos_tags
|
|
|
|
# Also test the results are still the same after IO
|
|
with make_tempdir() as tmp_dir:
|
|
nlp.to_disk(tmp_dir)
|
|
nlp2 = util.load_model_from_path(tmp_dir)
|
|
doc2 = nlp2(test_text)
|
|
assert [str(t.morph) for t in doc2] == gold_morphs
|
|
assert [t.pos_ for t in doc2] == gold_pos_tags
|
|
|
|
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
|
|
texts = [
|
|
"Just a sentence.",
|
|
"Then one more sentence about London.",
|
|
"Here is another one.",
|
|
"I like London.",
|
|
]
|
|
batch_deps_1 = [doc.to_array([MORPH]) for doc in nlp.pipe(texts)]
|
|
batch_deps_2 = [doc.to_array([MORPH]) for doc in nlp.pipe(texts)]
|
|
no_batch_deps = [doc.to_array([MORPH]) for doc in [nlp(text) for text in texts]]
|
|
assert_equal(batch_deps_1, batch_deps_2)
|
|
assert_equal(batch_deps_1, no_batch_deps)
|
|
|
|
# Test without POS
|
|
nlp.remove_pipe("morphologizer")
|
|
nlp.add_pipe("morphologizer")
|
|
for example in train_examples:
|
|
for token in example.reference:
|
|
token.pos_ = ""
|
|
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
|
for i in range(50):
|
|
losses = {}
|
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
|
assert losses["morphologizer"] < 0.00001
|
|
|
|
# Test the trained model
|
|
test_text = "I like blue ham"
|
|
doc = nlp(test_text)
|
|
gold_morphs = ["Feat=N", "Feat=V", "", ""]
|
|
gold_pos_tags = ["", "", "", ""]
|
|
assert [str(t.morph) for t in doc] == gold_morphs
|
|
assert [t.pos_ for t in doc] == gold_pos_tags
|
|
|
|
# Test overwrite+extend settings
|
|
# (note that "" is unset, "_" is set and empty)
|
|
morphs = ["Feat=V", "Feat=N", "_"]
|
|
doc = Doc(nlp.vocab, words=["blue", "ham", "like"], morphs=morphs)
|
|
orig_morphs = [str(t.morph) for t in doc]
|
|
orig_pos_tags = [t.pos_ for t in doc]
|
|
morphologizer = nlp.get_pipe("morphologizer")
|
|
|
|
# don't overwrite or extend
|
|
morphologizer.cfg["overwrite"] = False
|
|
doc = morphologizer(doc)
|
|
assert [str(t.morph) for t in doc] == orig_morphs
|
|
assert [t.pos_ for t in doc] == orig_pos_tags
|
|
|
|
# overwrite and extend
|
|
morphologizer.cfg["overwrite"] = True
|
|
morphologizer.cfg["extend"] = True
|
|
doc = Doc(nlp.vocab, words=["I", "like"], morphs=["Feat=A|That=A|This=A", ""])
|
|
doc = morphologizer(doc)
|
|
assert [str(t.morph) for t in doc] == ["Feat=N|That=A|This=A", "Feat=V"]
|
|
|
|
# extend without overwriting
|
|
morphologizer.cfg["overwrite"] = False
|
|
morphologizer.cfg["extend"] = True
|
|
doc = Doc(nlp.vocab, words=["I", "like"], morphs=["Feat=A|That=A|This=A", "That=B"])
|
|
doc = morphologizer(doc)
|
|
assert [str(t.morph) for t in doc] == ["Feat=A|That=A|This=A", "Feat=V|That=B"]
|
|
|
|
# overwrite without extending
|
|
morphologizer.cfg["overwrite"] = True
|
|
morphologizer.cfg["extend"] = False
|
|
doc = Doc(nlp.vocab, words=["I", "like"], morphs=["Feat=A|That=A|This=A", ""])
|
|
doc = morphologizer(doc)
|
|
assert [str(t.morph) for t in doc] == ["Feat=N", "Feat=V"]
|
|
|
|
# Test with unset morph and partial POS
|
|
nlp.remove_pipe("morphologizer")
|
|
nlp.add_pipe("morphologizer")
|
|
for example in train_examples:
|
|
for token in example.reference:
|
|
if token.text == "ham":
|
|
token.pos_ = "NOUN"
|
|
else:
|
|
token.pos_ = ""
|
|
token.set_morph(None)
|
|
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
|
assert nlp.get_pipe("morphologizer").labels is not None
|
|
for i in range(50):
|
|
losses = {}
|
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
|
assert losses["morphologizer"] < 0.00001
|
|
|
|
# Test the trained model
|
|
test_text = "I like blue ham"
|
|
doc = nlp(test_text)
|
|
gold_morphs = ["", "", "", ""]
|
|
gold_pos_tags = ["NOUN", "NOUN", "NOUN", "NOUN"]
|
|
assert [str(t.morph) for t in doc] == gold_morphs
|
|
assert [t.pos_ for t in doc] == gold_pos_tags
|