mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-01 00:17:44 +03:00 
			
		
		
		
	* Migrate regressions 1-1000 * Move serialize test to correct file * Remove tests that won't work in v3 * Migrate regressions 1000-1500 Removed regression test 1250 because v3 doesn't support the old LEX scheme anymore. * Add missing imports in serializer tests * Migrate tests 1500-2000 * Migrate regressions from 2000-2500 * Migrate regressions from 2501-3000 * Migrate regressions from 3000-3501 * Migrate regressions from 3501-4000 * Migrate regressions from 4001-4500 * Migrate regressions from 4501-5000 * Migrate regressions from 5001-5501 * Migrate regressions from 5501 to 7000 * Migrate regressions from 7001 to 8000 * Migrate remaining regression tests * Fixing missing imports * Update docs with new system [ci skip] * Update CONTRIBUTING.md - Fix formatting - Update wording * Remove lemmatizer tests in el lang * Move a few tests into the general tokenizer * Separate Doc and DocBin tests
		
			
				
	
	
		
			472 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			472 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pickle
 | |
| 
 | |
| import pytest
 | |
| import srsly
 | |
| from thinc.api import Linear
 | |
| 
 | |
| import spacy
 | |
| from spacy import Vocab, load, registry
 | |
| from spacy.lang.en import English
 | |
| from spacy.language import Language
 | |
| from spacy.pipeline import DependencyParser, EntityRecognizer, EntityRuler
 | |
| from spacy.pipeline import SentenceRecognizer, Tagger, TextCategorizer
 | |
| from spacy.pipeline import TrainablePipe
 | |
| from spacy.pipeline.dep_parser import DEFAULT_PARSER_MODEL
 | |
| from spacy.pipeline.senter import DEFAULT_SENTER_MODEL
 | |
| from spacy.pipeline.tagger import DEFAULT_TAGGER_MODEL
 | |
| from spacy.pipeline.textcat import DEFAULT_SINGLE_TEXTCAT_MODEL
 | |
| from spacy.util import ensure_path, load_model
 | |
| from spacy.tokens import Span
 | |
| 
 | |
| from ..util import make_tempdir
 | |
| 
 | |
| test_parsers = [DependencyParser, EntityRecognizer]
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def parser(en_vocab):
 | |
|     config = {
 | |
|         "learn_tokens": False,
 | |
|         "min_action_freq": 30,
 | |
|         "update_with_oracle_cut_size": 100,
 | |
|         "beam_width": 1,
 | |
|         "beam_update_prob": 1.0,
 | |
|         "beam_density": 0.0,
 | |
|     }
 | |
|     cfg = {"model": DEFAULT_PARSER_MODEL}
 | |
|     model = registry.resolve(cfg, validate=True)["model"]
 | |
|     parser = DependencyParser(en_vocab, model, **config)
 | |
|     parser.add_label("nsubj")
 | |
|     return parser
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def blank_parser(en_vocab):
 | |
|     config = {
 | |
|         "learn_tokens": False,
 | |
|         "min_action_freq": 30,
 | |
|         "update_with_oracle_cut_size": 100,
 | |
|         "beam_width": 1,
 | |
|         "beam_update_prob": 1.0,
 | |
|         "beam_density": 0.0,
 | |
|     }
 | |
|     cfg = {"model": DEFAULT_PARSER_MODEL}
 | |
|     model = registry.resolve(cfg, validate=True)["model"]
 | |
|     parser = DependencyParser(en_vocab, model, **config)
 | |
|     return parser
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def taggers(en_vocab):
 | |
|     cfg = {"model": DEFAULT_TAGGER_MODEL}
 | |
|     model = registry.resolve(cfg, validate=True)["model"]
 | |
|     tagger1 = Tagger(en_vocab, model)
 | |
|     tagger2 = Tagger(en_vocab, model)
 | |
|     return tagger1, tagger2
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(3456)
 | |
| def test_issue3456():
 | |
|     # this crashed because of a padding error in layer.ops.unflatten in thinc
 | |
|     nlp = English()
 | |
|     tagger = nlp.add_pipe("tagger")
 | |
|     tagger.add_label("A")
 | |
|     nlp.initialize()
 | |
|     list(nlp.pipe(["hi", ""]))
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(3526)
 | |
| def test_issue_3526_1(en_vocab):
 | |
|     patterns = [
 | |
|         {"label": "HELLO", "pattern": "hello world"},
 | |
|         {"label": "BYE", "pattern": [{"LOWER": "bye"}, {"LOWER": "bye"}]},
 | |
|         {"label": "HELLO", "pattern": [{"ORTH": "HELLO"}]},
 | |
|         {"label": "COMPLEX", "pattern": [{"ORTH": "foo", "OP": "*"}]},
 | |
|         {"label": "TECH_ORG", "pattern": "Apple", "id": "a1"},
 | |
|     ]
 | |
|     nlp = Language(vocab=en_vocab)
 | |
|     ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True)
 | |
|     ruler_bytes = ruler.to_bytes()
 | |
|     assert len(ruler) == len(patterns)
 | |
|     assert len(ruler.labels) == 4
 | |
|     assert ruler.overwrite
 | |
|     new_ruler = EntityRuler(nlp)
 | |
|     new_ruler = new_ruler.from_bytes(ruler_bytes)
 | |
|     assert len(new_ruler) == len(ruler)
 | |
|     assert len(new_ruler.labels) == 4
 | |
|     assert new_ruler.overwrite == ruler.overwrite
 | |
|     assert new_ruler.ent_id_sep == ruler.ent_id_sep
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(3526)
 | |
| def test_issue_3526_2(en_vocab):
 | |
|     patterns = [
 | |
|         {"label": "HELLO", "pattern": "hello world"},
 | |
|         {"label": "BYE", "pattern": [{"LOWER": "bye"}, {"LOWER": "bye"}]},
 | |
|         {"label": "HELLO", "pattern": [{"ORTH": "HELLO"}]},
 | |
|         {"label": "COMPLEX", "pattern": [{"ORTH": "foo", "OP": "*"}]},
 | |
|         {"label": "TECH_ORG", "pattern": "Apple", "id": "a1"},
 | |
|     ]
 | |
|     nlp = Language(vocab=en_vocab)
 | |
|     ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True)
 | |
|     bytes_old_style = srsly.msgpack_dumps(ruler.patterns)
 | |
|     new_ruler = EntityRuler(nlp)
 | |
|     new_ruler = new_ruler.from_bytes(bytes_old_style)
 | |
|     assert len(new_ruler) == len(ruler)
 | |
|     for pattern in ruler.patterns:
 | |
|         assert pattern in new_ruler.patterns
 | |
|     assert new_ruler.overwrite is not ruler.overwrite
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(3526)
 | |
| def test_issue_3526_3(en_vocab):
 | |
|     patterns = [
 | |
|         {"label": "HELLO", "pattern": "hello world"},
 | |
|         {"label": "BYE", "pattern": [{"LOWER": "bye"}, {"LOWER": "bye"}]},
 | |
|         {"label": "HELLO", "pattern": [{"ORTH": "HELLO"}]},
 | |
|         {"label": "COMPLEX", "pattern": [{"ORTH": "foo", "OP": "*"}]},
 | |
|         {"label": "TECH_ORG", "pattern": "Apple", "id": "a1"},
 | |
|     ]
 | |
|     nlp = Language(vocab=en_vocab)
 | |
|     ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True)
 | |
|     with make_tempdir() as tmpdir:
 | |
|         out_file = tmpdir / "entity_ruler"
 | |
|         srsly.write_jsonl(out_file.with_suffix(".jsonl"), ruler.patterns)
 | |
|         new_ruler = EntityRuler(nlp).from_disk(out_file)
 | |
|         for pattern in ruler.patterns:
 | |
|             assert pattern in new_ruler.patterns
 | |
|         assert len(new_ruler) == len(ruler)
 | |
|         assert new_ruler.overwrite is not ruler.overwrite
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(3526)
 | |
| def test_issue_3526_4(en_vocab):
 | |
|     nlp = Language(vocab=en_vocab)
 | |
|     patterns = [{"label": "ORG", "pattern": "Apple"}]
 | |
|     config = {"overwrite_ents": True}
 | |
|     ruler = nlp.add_pipe("entity_ruler", config=config)
 | |
|     ruler.add_patterns(patterns)
 | |
|     with make_tempdir() as tmpdir:
 | |
|         nlp.to_disk(tmpdir)
 | |
|         ruler = nlp.get_pipe("entity_ruler")
 | |
|         assert ruler.patterns == [{"label": "ORG", "pattern": "Apple"}]
 | |
|         assert ruler.overwrite is True
 | |
|         nlp2 = load(tmpdir)
 | |
|         new_ruler = nlp2.get_pipe("entity_ruler")
 | |
|         assert new_ruler.patterns == [{"label": "ORG", "pattern": "Apple"}]
 | |
|         assert new_ruler.overwrite is True
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(4042)
 | |
| def test_issue4042():
 | |
|     """Test that serialization of an EntityRuler before NER works fine."""
 | |
|     nlp = English()
 | |
|     # add ner pipe
 | |
|     ner = nlp.add_pipe("ner")
 | |
|     ner.add_label("SOME_LABEL")
 | |
|     nlp.initialize()
 | |
|     # Add entity ruler
 | |
|     patterns = [
 | |
|         {"label": "MY_ORG", "pattern": "Apple"},
 | |
|         {"label": "MY_GPE", "pattern": [{"lower": "san"}, {"lower": "francisco"}]},
 | |
|     ]
 | |
|     # works fine with "after"
 | |
|     ruler = nlp.add_pipe("entity_ruler", before="ner")
 | |
|     ruler.add_patterns(patterns)
 | |
|     doc1 = nlp("What do you think about Apple ?")
 | |
|     assert doc1.ents[0].label_ == "MY_ORG"
 | |
| 
 | |
|     with make_tempdir() as d:
 | |
|         output_dir = ensure_path(d)
 | |
|         if not output_dir.exists():
 | |
|             output_dir.mkdir()
 | |
|         nlp.to_disk(output_dir)
 | |
|         nlp2 = load_model(output_dir)
 | |
|         doc2 = nlp2("What do you think about Apple ?")
 | |
|         assert doc2.ents[0].label_ == "MY_ORG"
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(4042)
 | |
| def test_issue4042_bug2():
 | |
|     """
 | |
|     Test that serialization of an NER works fine when new labels were added.
 | |
|     This is the second bug of two bugs underlying the issue 4042.
 | |
|     """
 | |
|     nlp1 = English()
 | |
|     # add ner pipe
 | |
|     ner1 = nlp1.add_pipe("ner")
 | |
|     ner1.add_label("SOME_LABEL")
 | |
|     nlp1.initialize()
 | |
|     # add a new label to the doc
 | |
|     doc1 = nlp1("What do you think about Apple ?")
 | |
|     assert len(ner1.labels) == 1
 | |
|     assert "SOME_LABEL" in ner1.labels
 | |
|     apple_ent = Span(doc1, 5, 6, label="MY_ORG")
 | |
|     doc1.ents = list(doc1.ents) + [apple_ent]
 | |
|     # Add the label explicitly. Previously we didn't require this.
 | |
|     ner1.add_label("MY_ORG")
 | |
|     ner1(doc1)
 | |
|     assert len(ner1.labels) == 2
 | |
|     assert "SOME_LABEL" in ner1.labels
 | |
|     assert "MY_ORG" in ner1.labels
 | |
|     with make_tempdir() as d:
 | |
|         # assert IO goes fine
 | |
|         output_dir = ensure_path(d)
 | |
|         if not output_dir.exists():
 | |
|             output_dir.mkdir()
 | |
|         ner1.to_disk(output_dir)
 | |
|         config = {}
 | |
|         ner2 = nlp1.create_pipe("ner", config=config)
 | |
|         ner2.from_disk(output_dir)
 | |
|         assert len(ner2.labels) == 2
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(4725)
 | |
| def test_issue4725_1():
 | |
|     """Ensure the pickling of the NER goes well"""
 | |
|     vocab = Vocab(vectors_name="test_vocab_add_vector")
 | |
|     nlp = English(vocab=vocab)
 | |
|     config = {
 | |
|         "update_with_oracle_cut_size": 111,
 | |
|     }
 | |
|     ner = nlp.create_pipe("ner", config=config)
 | |
|     with make_tempdir() as tmp_path:
 | |
|         with (tmp_path / "ner.pkl").open("wb") as file_:
 | |
|             pickle.dump(ner, file_)
 | |
|             assert ner.cfg["update_with_oracle_cut_size"] == 111
 | |
| 
 | |
|         with (tmp_path / "ner.pkl").open("rb") as file_:
 | |
|             ner2 = pickle.load(file_)
 | |
|             assert ner2.cfg["update_with_oracle_cut_size"] == 111
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("Parser", test_parsers)
 | |
| def test_serialize_parser_roundtrip_bytes(en_vocab, Parser):
 | |
|     cfg = {"model": DEFAULT_PARSER_MODEL}
 | |
|     model = registry.resolve(cfg, validate=True)["model"]
 | |
|     parser = Parser(en_vocab, model)
 | |
|     new_parser = Parser(en_vocab, model)
 | |
|     new_parser = new_parser.from_bytes(parser.to_bytes(exclude=["vocab"]))
 | |
|     bytes_2 = new_parser.to_bytes(exclude=["vocab"])
 | |
|     bytes_3 = parser.to_bytes(exclude=["vocab"])
 | |
|     assert len(bytes_2) == len(bytes_3)
 | |
|     assert bytes_2 == bytes_3
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("Parser", test_parsers)
 | |
| def test_serialize_parser_strings(Parser):
 | |
|     vocab1 = Vocab()
 | |
|     label = "FunnyLabel"
 | |
|     assert label not in vocab1.strings
 | |
|     cfg = {"model": DEFAULT_PARSER_MODEL}
 | |
|     model = registry.resolve(cfg, validate=True)["model"]
 | |
|     parser1 = Parser(vocab1, model)
 | |
|     parser1.add_label(label)
 | |
|     assert label in parser1.vocab.strings
 | |
|     vocab2 = Vocab()
 | |
|     assert label not in vocab2.strings
 | |
|     parser2 = Parser(vocab2, model)
 | |
|     parser2 = parser2.from_bytes(parser1.to_bytes(exclude=["vocab"]))
 | |
|     assert label in parser2.vocab.strings
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("Parser", test_parsers)
 | |
| def test_serialize_parser_roundtrip_disk(en_vocab, Parser):
 | |
|     cfg = {"model": DEFAULT_PARSER_MODEL}
 | |
|     model = registry.resolve(cfg, validate=True)["model"]
 | |
|     parser = Parser(en_vocab, model)
 | |
|     with make_tempdir() as d:
 | |
|         file_path = d / "parser"
 | |
|         parser.to_disk(file_path)
 | |
|         parser_d = Parser(en_vocab, model)
 | |
|         parser_d = parser_d.from_disk(file_path)
 | |
|         parser_bytes = parser.to_bytes(exclude=["model", "vocab"])
 | |
|         parser_d_bytes = parser_d.to_bytes(exclude=["model", "vocab"])
 | |
|         assert len(parser_bytes) == len(parser_d_bytes)
 | |
|         assert parser_bytes == parser_d_bytes
 | |
| 
 | |
| 
 | |
| def test_to_from_bytes(parser, blank_parser):
 | |
|     assert parser.model is not True
 | |
|     assert blank_parser.model is not True
 | |
|     assert blank_parser.moves.n_moves != parser.moves.n_moves
 | |
|     bytes_data = parser.to_bytes(exclude=["vocab"])
 | |
|     # the blank parser needs to be resized before we can call from_bytes
 | |
|     blank_parser.model.attrs["resize_output"](blank_parser.model, parser.moves.n_moves)
 | |
|     blank_parser.from_bytes(bytes_data)
 | |
|     assert blank_parser.model is not True
 | |
|     assert blank_parser.moves.n_moves == parser.moves.n_moves
 | |
| 
 | |
| 
 | |
| def test_serialize_tagger_roundtrip_bytes(en_vocab, taggers):
 | |
|     tagger1 = taggers[0]
 | |
|     tagger1_b = tagger1.to_bytes()
 | |
|     tagger1 = tagger1.from_bytes(tagger1_b)
 | |
|     assert tagger1.to_bytes() == tagger1_b
 | |
|     cfg = {"model": DEFAULT_TAGGER_MODEL}
 | |
|     model = registry.resolve(cfg, validate=True)["model"]
 | |
|     new_tagger1 = Tagger(en_vocab, model).from_bytes(tagger1_b)
 | |
|     new_tagger1_b = new_tagger1.to_bytes()
 | |
|     assert len(new_tagger1_b) == len(tagger1_b)
 | |
|     assert new_tagger1_b == tagger1_b
 | |
| 
 | |
| 
 | |
| def test_serialize_tagger_roundtrip_disk(en_vocab, taggers):
 | |
|     tagger1, tagger2 = taggers
 | |
|     with make_tempdir() as d:
 | |
|         file_path1 = d / "tagger1"
 | |
|         file_path2 = d / "tagger2"
 | |
|         tagger1.to_disk(file_path1)
 | |
|         tagger2.to_disk(file_path2)
 | |
|         cfg = {"model": DEFAULT_TAGGER_MODEL}
 | |
|         model = registry.resolve(cfg, validate=True)["model"]
 | |
|         tagger1_d = Tagger(en_vocab, model).from_disk(file_path1)
 | |
|         tagger2_d = Tagger(en_vocab, model).from_disk(file_path2)
 | |
|         assert tagger1_d.to_bytes() == tagger2_d.to_bytes()
 | |
| 
 | |
| 
 | |
| def test_serialize_tagger_strings(en_vocab, de_vocab, taggers):
 | |
|     label = "SomeWeirdLabel"
 | |
|     assert label not in en_vocab.strings
 | |
|     assert label not in de_vocab.strings
 | |
|     tagger = taggers[0]
 | |
|     assert label not in tagger.vocab.strings
 | |
|     with make_tempdir() as d:
 | |
|         # check that custom labels are serialized as part of the component's strings.jsonl
 | |
|         tagger.add_label(label)
 | |
|         assert label in tagger.vocab.strings
 | |
|         file_path = d / "tagger1"
 | |
|         tagger.to_disk(file_path)
 | |
|         # ensure that the custom strings are loaded back in when using the tagger in another pipeline
 | |
|         cfg = {"model": DEFAULT_TAGGER_MODEL}
 | |
|         model = registry.resolve(cfg, validate=True)["model"]
 | |
|         tagger2 = Tagger(de_vocab, model).from_disk(file_path)
 | |
|         assert label in tagger2.vocab.strings
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(1105)
 | |
| def test_serialize_textcat_empty(en_vocab):
 | |
|     # See issue #1105
 | |
|     cfg = {"model": DEFAULT_SINGLE_TEXTCAT_MODEL}
 | |
|     model = registry.resolve(cfg, validate=True)["model"]
 | |
|     textcat = TextCategorizer(en_vocab, model, threshold=0.5)
 | |
|     textcat.to_bytes(exclude=["vocab"])
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("Parser", test_parsers)
 | |
| def test_serialize_pipe_exclude(en_vocab, Parser):
 | |
|     cfg = {"model": DEFAULT_PARSER_MODEL}
 | |
|     model = registry.resolve(cfg, validate=True)["model"]
 | |
| 
 | |
|     def get_new_parser():
 | |
|         new_parser = Parser(en_vocab, model)
 | |
|         return new_parser
 | |
| 
 | |
|     parser = Parser(en_vocab, model)
 | |
|     parser.cfg["foo"] = "bar"
 | |
|     new_parser = get_new_parser().from_bytes(parser.to_bytes(exclude=["vocab"]))
 | |
|     assert "foo" in new_parser.cfg
 | |
|     new_parser = get_new_parser().from_bytes(
 | |
|         parser.to_bytes(exclude=["vocab"]), exclude=["cfg"]
 | |
|     )
 | |
|     assert "foo" not in new_parser.cfg
 | |
|     new_parser = get_new_parser().from_bytes(
 | |
|         parser.to_bytes(exclude=["cfg"]), exclude=["vocab"]
 | |
|     )
 | |
|     assert "foo" not in new_parser.cfg
 | |
| 
 | |
| 
 | |
| def test_serialize_sentencerecognizer(en_vocab):
 | |
|     cfg = {"model": DEFAULT_SENTER_MODEL}
 | |
|     model = registry.resolve(cfg, validate=True)["model"]
 | |
|     sr = SentenceRecognizer(en_vocab, model)
 | |
|     sr_b = sr.to_bytes()
 | |
|     sr_d = SentenceRecognizer(en_vocab, model).from_bytes(sr_b)
 | |
|     assert sr.to_bytes() == sr_d.to_bytes()
 | |
| 
 | |
| 
 | |
| def test_serialize_pipeline_disable_enable():
 | |
|     nlp = English()
 | |
|     nlp.add_pipe("ner")
 | |
|     nlp.add_pipe("tagger")
 | |
|     nlp.disable_pipe("tagger")
 | |
|     assert nlp.config["nlp"]["disabled"] == ["tagger"]
 | |
|     config = nlp.config.copy()
 | |
|     nlp2 = English.from_config(config)
 | |
|     assert nlp2.pipe_names == ["ner"]
 | |
|     assert nlp2.component_names == ["ner", "tagger"]
 | |
|     assert nlp2.disabled == ["tagger"]
 | |
|     assert nlp2.config["nlp"]["disabled"] == ["tagger"]
 | |
|     with make_tempdir() as d:
 | |
|         nlp2.to_disk(d)
 | |
|         nlp3 = spacy.load(d)
 | |
|     assert nlp3.pipe_names == ["ner"]
 | |
|     assert nlp3.component_names == ["ner", "tagger"]
 | |
|     with make_tempdir() as d:
 | |
|         nlp3.to_disk(d)
 | |
|         nlp4 = spacy.load(d, disable=["ner"])
 | |
|     assert nlp4.pipe_names == []
 | |
|     assert nlp4.component_names == ["ner", "tagger"]
 | |
|     assert nlp4.disabled == ["ner", "tagger"]
 | |
|     with make_tempdir() as d:
 | |
|         nlp.to_disk(d)
 | |
|         nlp5 = spacy.load(d, exclude=["tagger"])
 | |
|     assert nlp5.pipe_names == ["ner"]
 | |
|     assert nlp5.component_names == ["ner"]
 | |
|     assert nlp5.disabled == []
 | |
| 
 | |
| 
 | |
| def test_serialize_custom_trainable_pipe():
 | |
|     class BadCustomPipe1(TrainablePipe):
 | |
|         def __init__(self, vocab):
 | |
|             pass
 | |
| 
 | |
|     class BadCustomPipe2(TrainablePipe):
 | |
|         def __init__(self, vocab):
 | |
|             self.vocab = vocab
 | |
|             self.model = None
 | |
| 
 | |
|     class CustomPipe(TrainablePipe):
 | |
|         def __init__(self, vocab, model):
 | |
|             self.vocab = vocab
 | |
|             self.model = model
 | |
| 
 | |
|     pipe = BadCustomPipe1(Vocab())
 | |
|     with pytest.raises(ValueError):
 | |
|         pipe.to_bytes()
 | |
|     with make_tempdir() as d:
 | |
|         with pytest.raises(ValueError):
 | |
|             pipe.to_disk(d)
 | |
|     pipe = BadCustomPipe2(Vocab())
 | |
|     with pytest.raises(ValueError):
 | |
|         pipe.to_bytes()
 | |
|     with make_tempdir() as d:
 | |
|         with pytest.raises(ValueError):
 | |
|             pipe.to_disk(d)
 | |
|     pipe = CustomPipe(Vocab(), Linear())
 | |
|     pipe_bytes = pipe.to_bytes()
 | |
|     new_pipe = CustomPipe(Vocab(), Linear()).from_bytes(pipe_bytes)
 | |
|     assert new_pipe.to_bytes() == pipe_bytes
 | |
|     with make_tempdir() as d:
 | |
|         pipe.to_disk(d)
 | |
|         new_pipe = CustomPipe(Vocab(), Linear()).from_disk(d)
 | |
|     assert new_pipe.to_bytes() == pipe_bytes
 | |
| 
 | |
| 
 | |
| def test_load_without_strings():
 | |
|     nlp = spacy.blank("en")
 | |
|     orig_strings_length = len(nlp.vocab.strings)
 | |
|     word = "unlikely_word_" * 20
 | |
|     nlp.vocab.strings.add(word)
 | |
|     assert len(nlp.vocab.strings) == orig_strings_length + 1
 | |
|     with make_tempdir() as d:
 | |
|         nlp.to_disk(d)
 | |
|         # reload with strings
 | |
|         reloaded_nlp = load(d)
 | |
|         assert len(nlp.vocab.strings) == len(reloaded_nlp.vocab.strings)
 | |
|         assert word in reloaded_nlp.vocab.strings
 | |
|         # reload without strings
 | |
|         reloaded_nlp = load(d, exclude=["strings"])
 | |
|         assert orig_strings_length == len(reloaded_nlp.vocab.strings)
 | |
|         assert word not in reloaded_nlp.vocab.strings
 |