mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	* TextCatParametricAttention.v1: set key transform dimensions This is necessary for tok2vec implementations that initialize lazily (e.g. curated transformers). * Add lazily-initialized tok2vec to simulate transformers Add a lazily-initialized tok2vec to the tests and test the current textcat models with it. Fix some additional issues found using this test. * isort * Add `test.` prefix to `LazyInitTok2Vec.v1`
		
			
				
	
	
		
			372 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			372 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from functools import partial
 | |
| from typing import List, Optional, Tuple, cast
 | |
| 
 | |
| from thinc.api import (
 | |
|     Dropout,
 | |
|     Gelu,
 | |
|     LayerNorm,
 | |
|     Linear,
 | |
|     Logistic,
 | |
|     Maxout,
 | |
|     Model,
 | |
|     ParametricAttention,
 | |
|     ParametricAttention_v2,
 | |
|     Relu,
 | |
|     Softmax,
 | |
|     SparseLinear,
 | |
|     SparseLinear_v2,
 | |
|     chain,
 | |
|     clone,
 | |
|     concatenate,
 | |
|     list2ragged,
 | |
|     reduce_first,
 | |
|     reduce_last,
 | |
|     reduce_max,
 | |
|     reduce_mean,
 | |
|     reduce_sum,
 | |
|     residual,
 | |
|     resizable,
 | |
|     softmax_activation,
 | |
|     with_cpu,
 | |
| )
 | |
| from thinc.layers.chain import init as init_chain
 | |
| from thinc.layers.resizable import resize_linear_weighted, resize_model
 | |
| from thinc.types import ArrayXd, Floats2d
 | |
| 
 | |
| from ...attrs import ORTH
 | |
| from ...errors import Errors
 | |
| from ...tokens import Doc
 | |
| from ...util import registry
 | |
| from ..extract_ngrams import extract_ngrams
 | |
| from ..staticvectors import StaticVectors
 | |
| from .tok2vec import get_tok2vec_width
 | |
| 
 | |
| NEG_VALUE = -5000
 | |
| 
 | |
| 
 | |
| @registry.architectures("spacy.TextCatCNN.v2")
 | |
| def build_simple_cnn_text_classifier(
 | |
|     tok2vec: Model, exclusive_classes: bool, nO: Optional[int] = None
 | |
| ) -> Model[List[Doc], Floats2d]:
 | |
|     """
 | |
|     Build a simple CNN text classifier, given a token-to-vector model as inputs.
 | |
|     If exclusive_classes=True, a softmax non-linearity is applied, so that the
 | |
|     outputs sum to 1. If exclusive_classes=False, a logistic non-linearity
 | |
|     is applied instead, so that outputs are in the range [0, 1].
 | |
|     """
 | |
|     return build_reduce_text_classifier(
 | |
|         tok2vec=tok2vec,
 | |
|         exclusive_classes=exclusive_classes,
 | |
|         use_reduce_first=False,
 | |
|         use_reduce_last=False,
 | |
|         use_reduce_max=False,
 | |
|         use_reduce_mean=True,
 | |
|         nO=nO,
 | |
|     )
 | |
| 
 | |
| 
 | |
| def resize_and_set_ref(model, new_nO, resizable_layer):
 | |
|     resizable_layer = resize_model(resizable_layer, new_nO)
 | |
|     model.set_ref("output_layer", resizable_layer.layers[0])
 | |
|     model.set_dim("nO", new_nO, force=True)
 | |
|     return model
 | |
| 
 | |
| 
 | |
| @registry.architectures("spacy.TextCatBOW.v2")
 | |
| def build_bow_text_classifier(
 | |
|     exclusive_classes: bool,
 | |
|     ngram_size: int,
 | |
|     no_output_layer: bool,
 | |
|     nO: Optional[int] = None,
 | |
| ) -> Model[List[Doc], Floats2d]:
 | |
|     return _build_bow_text_classifier(
 | |
|         exclusive_classes=exclusive_classes,
 | |
|         ngram_size=ngram_size,
 | |
|         no_output_layer=no_output_layer,
 | |
|         nO=nO,
 | |
|         sparse_linear=SparseLinear(nO=nO),
 | |
|     )
 | |
| 
 | |
| 
 | |
| @registry.architectures("spacy.TextCatBOW.v3")
 | |
| def build_bow_text_classifier_v3(
 | |
|     exclusive_classes: bool,
 | |
|     ngram_size: int,
 | |
|     no_output_layer: bool,
 | |
|     length: int = 262144,
 | |
|     nO: Optional[int] = None,
 | |
| ) -> Model[List[Doc], Floats2d]:
 | |
|     if length < 1:
 | |
|         raise ValueError(Errors.E1056.format(length=length))
 | |
| 
 | |
|     # Find k such that 2**(k-1) < length <= 2**k.
 | |
|     length = 2 ** (length - 1).bit_length()
 | |
| 
 | |
|     return _build_bow_text_classifier(
 | |
|         exclusive_classes=exclusive_classes,
 | |
|         ngram_size=ngram_size,
 | |
|         no_output_layer=no_output_layer,
 | |
|         nO=nO,
 | |
|         sparse_linear=SparseLinear_v2(nO=nO, length=length),
 | |
|     )
 | |
| 
 | |
| 
 | |
| def _build_bow_text_classifier(
 | |
|     exclusive_classes: bool,
 | |
|     ngram_size: int,
 | |
|     no_output_layer: bool,
 | |
|     sparse_linear: Model[Tuple[ArrayXd, ArrayXd, ArrayXd], ArrayXd],
 | |
|     nO: Optional[int] = None,
 | |
| ) -> Model[List[Doc], Floats2d]:
 | |
|     fill_defaults = {"b": 0, "W": 0}
 | |
|     with Model.define_operators({">>": chain}):
 | |
|         output_layer = None
 | |
|         if not no_output_layer:
 | |
|             fill_defaults["b"] = NEG_VALUE
 | |
|             output_layer = softmax_activation() if exclusive_classes else Logistic()
 | |
|         resizable_layer: Model[Floats2d, Floats2d] = resizable(
 | |
|             sparse_linear,
 | |
|             resize_layer=partial(resize_linear_weighted, fill_defaults=fill_defaults),
 | |
|         )
 | |
|         model = extract_ngrams(ngram_size, attr=ORTH) >> resizable_layer
 | |
|         model = with_cpu(model, model.ops)
 | |
|         if output_layer:
 | |
|             model = model >> with_cpu(output_layer, output_layer.ops)
 | |
|     if nO is not None:
 | |
|         model.set_dim("nO", cast(int, nO))
 | |
|     model.set_ref("output_layer", sparse_linear)
 | |
|     model.attrs["multi_label"] = not exclusive_classes
 | |
|     model.attrs["resize_output"] = partial(
 | |
|         resize_and_set_ref, resizable_layer=resizable_layer
 | |
|     )
 | |
|     return model
 | |
| 
 | |
| 
 | |
| @registry.architectures("spacy.TextCatEnsemble.v2")
 | |
| def build_text_classifier_v2(
 | |
|     tok2vec: Model[List[Doc], List[Floats2d]],
 | |
|     linear_model: Model[List[Doc], Floats2d],
 | |
|     nO: Optional[int] = None,
 | |
| ) -> Model[List[Doc], Floats2d]:
 | |
|     # TODO: build the model with _build_parametric_attention_with_residual_nonlinear
 | |
|     # in spaCy v4. We don't do this in spaCy v3 to preserve model
 | |
|     # compatibility.
 | |
|     exclusive_classes = not linear_model.attrs["multi_label"]
 | |
|     with Model.define_operators({">>": chain, "|": concatenate}):
 | |
|         width = tok2vec.maybe_get_dim("nO")
 | |
|         attention_layer = ParametricAttention(width)
 | |
|         maxout_layer = Maxout(nO=width, nI=width)
 | |
|         norm_layer = LayerNorm(nI=width)
 | |
|         cnn_model = (
 | |
|             tok2vec
 | |
|             >> list2ragged()
 | |
|             >> attention_layer
 | |
|             >> reduce_sum()
 | |
|             >> residual(maxout_layer >> norm_layer >> Dropout(0.0))
 | |
|         )
 | |
| 
 | |
|         nO_double = nO * 2 if nO else None
 | |
|         if exclusive_classes:
 | |
|             output_layer = Softmax(nO=nO, nI=nO_double)
 | |
|         else:
 | |
|             output_layer = Linear(nO=nO, nI=nO_double) >> Logistic()
 | |
|         model = (linear_model | cnn_model) >> output_layer
 | |
|         model.set_ref("tok2vec", tok2vec)
 | |
|     if model.has_dim("nO") is not False and nO is not None:
 | |
|         model.set_dim("nO", cast(int, nO))
 | |
|     model.set_ref("output_layer", linear_model.get_ref("output_layer"))
 | |
|     model.set_ref("attention_layer", attention_layer)
 | |
|     model.set_ref("maxout_layer", maxout_layer)
 | |
|     model.set_ref("norm_layer", norm_layer)
 | |
|     model.attrs["multi_label"] = not exclusive_classes
 | |
| 
 | |
|     model.init = init_ensemble_textcat  # type: ignore[assignment]
 | |
|     return model
 | |
| 
 | |
| 
 | |
| def init_ensemble_textcat(model, X, Y) -> Model:
 | |
|     # When tok2vec is lazily initialized, we need to initialize it before
 | |
|     # the rest of the chain to ensure that we can get its width.
 | |
|     tok2vec = model.get_ref("tok2vec")
 | |
|     tok2vec.initialize(X)
 | |
| 
 | |
|     tok2vec_width = get_tok2vec_width(model)
 | |
|     model.get_ref("attention_layer").set_dim("nO", tok2vec_width)
 | |
|     model.get_ref("maxout_layer").set_dim("nO", tok2vec_width)
 | |
|     model.get_ref("maxout_layer").set_dim("nI", tok2vec_width)
 | |
|     model.get_ref("norm_layer").set_dim("nI", tok2vec_width)
 | |
|     model.get_ref("norm_layer").set_dim("nO", tok2vec_width)
 | |
|     init_chain(model, X, Y)
 | |
|     return model
 | |
| 
 | |
| 
 | |
| @registry.architectures("spacy.TextCatLowData.v1")
 | |
| def build_text_classifier_lowdata(
 | |
|     width: int, dropout: Optional[float], nO: Optional[int] = None
 | |
| ) -> Model[List[Doc], Floats2d]:
 | |
|     # Don't document this yet, I'm not sure it's right.
 | |
|     # Note, before v.3, this was the default if setting "low_data" and "pretrained_dims"
 | |
|     with Model.define_operators({">>": chain, "**": clone}):
 | |
|         model = (
 | |
|             StaticVectors(width)
 | |
|             >> list2ragged()
 | |
|             >> ParametricAttention(width)
 | |
|             >> reduce_sum()
 | |
|             >> residual(Relu(width, width)) ** 2
 | |
|             >> Linear(nO, width)
 | |
|         )
 | |
|         if dropout:
 | |
|             model = model >> Dropout(dropout)
 | |
|         model = model >> Logistic()
 | |
|     return model
 | |
| 
 | |
| 
 | |
| @registry.architectures("spacy.TextCatParametricAttention.v1")
 | |
| def build_textcat_parametric_attention_v1(
 | |
|     tok2vec: Model[List[Doc], List[Floats2d]],
 | |
|     exclusive_classes: bool,
 | |
|     nO: Optional[int] = None,
 | |
| ) -> Model[List[Doc], Floats2d]:
 | |
|     width = tok2vec.maybe_get_dim("nO")
 | |
|     parametric_attention = _build_parametric_attention_with_residual_nonlinear(
 | |
|         tok2vec=tok2vec,
 | |
|         nonlinear_layer=Maxout(nI=width, nO=width),
 | |
|         key_transform=Gelu(nI=width, nO=width),
 | |
|     )
 | |
|     with Model.define_operators({">>": chain}):
 | |
|         if exclusive_classes:
 | |
|             output_layer = Softmax(nO=nO)
 | |
|         else:
 | |
|             output_layer = Linear(nO=nO) >> Logistic()
 | |
|         model = parametric_attention >> output_layer
 | |
|     if model.has_dim("nO") is not False and nO is not None:
 | |
|         model.set_dim("nO", cast(int, nO))
 | |
|     model.set_ref("output_layer", output_layer)
 | |
|     model.attrs["multi_label"] = not exclusive_classes
 | |
| 
 | |
|     return model
 | |
| 
 | |
| 
 | |
| def _build_parametric_attention_with_residual_nonlinear(
 | |
|     *,
 | |
|     tok2vec: Model[List[Doc], List[Floats2d]],
 | |
|     nonlinear_layer: Model[Floats2d, Floats2d],
 | |
|     key_transform: Optional[Model[Floats2d, Floats2d]] = None,
 | |
| ) -> Model[List[Doc], Floats2d]:
 | |
|     with Model.define_operators({">>": chain, "|": concatenate}):
 | |
|         width = tok2vec.maybe_get_dim("nO")
 | |
|         attention_layer = ParametricAttention_v2(nO=width, key_transform=key_transform)
 | |
|         norm_layer = LayerNorm(nI=width)
 | |
|         parametric_attention = (
 | |
|             tok2vec
 | |
|             >> list2ragged()
 | |
|             >> attention_layer
 | |
|             >> reduce_sum()
 | |
|             >> residual(nonlinear_layer >> norm_layer >> Dropout(0.0))
 | |
|         )
 | |
| 
 | |
|         parametric_attention.init = _init_parametric_attention_with_residual_nonlinear
 | |
| 
 | |
|         parametric_attention.set_ref("tok2vec", tok2vec)
 | |
|         parametric_attention.set_ref("attention_layer", attention_layer)
 | |
|         parametric_attention.set_ref("key_transform", key_transform)
 | |
|         parametric_attention.set_ref("nonlinear_layer", nonlinear_layer)
 | |
|         parametric_attention.set_ref("norm_layer", norm_layer)
 | |
| 
 | |
|         return parametric_attention
 | |
| 
 | |
| 
 | |
| def _init_parametric_attention_with_residual_nonlinear(model, X, Y) -> Model:
 | |
|     # When tok2vec is lazily initialized, we need to initialize it before
 | |
|     # the rest of the chain to ensure that we can get its width.
 | |
|     tok2vec = model.get_ref("tok2vec")
 | |
|     tok2vec.initialize(X)
 | |
| 
 | |
|     tok2vec_width = get_tok2vec_width(model)
 | |
|     model.get_ref("attention_layer").set_dim("nO", tok2vec_width)
 | |
|     model.get_ref("key_transform").set_dim("nI", tok2vec_width)
 | |
|     model.get_ref("key_transform").set_dim("nO", tok2vec_width)
 | |
|     model.get_ref("nonlinear_layer").set_dim("nI", tok2vec_width)
 | |
|     model.get_ref("nonlinear_layer").set_dim("nO", tok2vec_width)
 | |
|     model.get_ref("norm_layer").set_dim("nI", tok2vec_width)
 | |
|     model.get_ref("norm_layer").set_dim("nO", tok2vec_width)
 | |
|     init_chain(model, X, Y)
 | |
|     return model
 | |
| 
 | |
| 
 | |
| @registry.architectures("spacy.TextCatReduce.v1")
 | |
| def build_reduce_text_classifier(
 | |
|     tok2vec: Model,
 | |
|     exclusive_classes: bool,
 | |
|     use_reduce_first: bool,
 | |
|     use_reduce_last: bool,
 | |
|     use_reduce_max: bool,
 | |
|     use_reduce_mean: bool,
 | |
|     nO: Optional[int] = None,
 | |
| ) -> Model[List[Doc], Floats2d]:
 | |
|     """Build a model that classifies pooled `Doc` representations.
 | |
| 
 | |
|     Pooling is performed using reductions. Reductions are concatenated when
 | |
|     multiple reductions are used.
 | |
| 
 | |
|     tok2vec (Model): the tok2vec layer to pool over.
 | |
|     exclusive_classes (bool): Whether or not classes are mutually exclusive.
 | |
|     use_reduce_first (bool): Pool by using the hidden representation of the
 | |
|         first token of a `Doc`.
 | |
|     use_reduce_last (bool): Pool by using the hidden representation of the
 | |
|         last token of a `Doc`.
 | |
|     use_reduce_max (bool): Pool by taking the maximum values of the hidden
 | |
|         representations of a `Doc`.
 | |
|     use_reduce_mean (bool): Pool by taking the mean of all hidden
 | |
|         representations of a `Doc`.
 | |
|     nO (Optional[int]): Number of classes.
 | |
|     """
 | |
| 
 | |
|     fill_defaults = {"b": 0, "W": 0}
 | |
|     reductions = []
 | |
|     if use_reduce_first:
 | |
|         reductions.append(reduce_first())
 | |
|     if use_reduce_last:
 | |
|         reductions.append(reduce_last())
 | |
|     if use_reduce_max:
 | |
|         reductions.append(reduce_max())
 | |
|     if use_reduce_mean:
 | |
|         reductions.append(reduce_mean())
 | |
| 
 | |
|     if not len(reductions):
 | |
|         raise ValueError(Errors.E1057)
 | |
| 
 | |
|     with Model.define_operators({">>": chain}):
 | |
|         cnn = tok2vec >> list2ragged() >> concatenate(*reductions)
 | |
|         nO_tok2vec = tok2vec.maybe_get_dim("nO")
 | |
|         nI = nO_tok2vec * len(reductions) if nO_tok2vec is not None else None
 | |
|         if exclusive_classes:
 | |
|             output_layer = Softmax(nO=nO, nI=nI)
 | |
|             fill_defaults["b"] = NEG_VALUE
 | |
|             resizable_layer: Model = resizable(
 | |
|                 output_layer,
 | |
|                 resize_layer=partial(
 | |
|                     resize_linear_weighted, fill_defaults=fill_defaults
 | |
|                 ),
 | |
|             )
 | |
|             model = cnn >> resizable_layer
 | |
|         else:
 | |
|             output_layer = Linear(nO=nO, nI=nI)
 | |
|             resizable_layer = resizable(
 | |
|                 output_layer,
 | |
|                 resize_layer=partial(
 | |
|                     resize_linear_weighted, fill_defaults=fill_defaults
 | |
|                 ),
 | |
|             )
 | |
|             model = cnn >> resizable_layer >> Logistic()
 | |
|         model.set_ref("output_layer", output_layer)
 | |
|         model.attrs["resize_output"] = partial(
 | |
|             resize_and_set_ref,
 | |
|             resizable_layer=resizable_layer,
 | |
|         )
 | |
|     model.set_ref("tok2vec", tok2vec)
 | |
|     if nO is not None:
 | |
|         model.set_dim("nO", cast(int, nO))
 | |
|     model.attrs["multi_label"] = not exclusive_classes
 | |
|     return model
 |