mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-16 12:36:23 +03:00
304b9331e6
* Convert Candidate from Cython to Python class. * Format. * Fix .entity_ typo in _add_activations() usage. * Change type for mentions to look up entity candidates for to SpanGroup from Iterable[Span]. * Update docs. * Update spacy/kb/candidate.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update doc string of BaseCandidate.__init__(). * Update spacy/kb/candidate.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Rename Candidate to InMemoryCandidate, BaseCandidate to Candidate. * Adjust Candidate to support and mandate numerical entity IDs. * Format. * Fix docstring and docs. * Update website/docs/api/kb.mdx Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Rename alias -> mention. * Refactor Candidate attribute names. Update docs and tests accordingly. * Refacor Candidate attributes and their usage. * Format. * Fix mypy error. * Update error code in line with v4 convention. * Modify EL batching system. * Update leftover get_candidates() mention in docs. * Format docs. * Format. * Update spacy/kb/candidate.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Updated error code. * Simplify interface for int/str representations. * Update website/docs/api/kb.mdx Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Rename 'alias' to 'mention'. * Port Candidate and InMemoryCandidate to Cython. * Remove redundant entry in setup.py. * Add abstract class check. * Drop storing mention. * Update spacy/kb/candidate.pxd Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Fix entity_id refactoring problems in docstrings. * Drop unused InMemoryCandidate._entity_hash. * Update docstrings. * Move attributes out of Candidate. * Partially fix alias/mention terminology usage. Convert Candidate to interface. * Remove prior_prob from supported properties in Candidate. Introduce KnowledgeBase.supports_prior_probs(). * Update docstrings related to prior_prob. * Update alias/mention usage in doc(strings). * Update spacy/ml/models/entity_linker.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/ml/models/entity_linker.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Mention -> alias renaming. Drop Candidate.mentions(). Drop InMemoryLookupKB.get_alias_candidates() from docs. * Update docstrings. * Fix InMemoryCandidate attribute names. * Update spacy/kb/kb.pyx Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/ml/models/entity_linker.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update W401 test. * Update spacy/errors.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/kb/kb.pyx Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Use Candidate output type for toy generators in the test suite to mimick best practices * fix docs * fix import * Fix merge leftovers. * Update spacy/kb/kb.pyx Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/kb/kb.pyx Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update website/docs/api/kb.mdx Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update website/docs/api/entitylinker.mdx Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/kb/kb_in_memory.pyx Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update website/docs/api/inmemorylookupkb.mdx Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update get_candidates() docstring. * Reformat imports in entity_linker.py. * Drop valid_ent_idx_per_doc. * Update docs. * Format. * Simplify doc loop in predict(). * Remove E1044 comment. * Fix merge errors. * Format. * Format. * Format. * Fix merge error & tests. * Format. * Apply suggestions from code review Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com> * Use type alias. * isort. * isort. * Lint. * Add typedefs.pyx. * Fix typedef import. * Fix type aliases. * Format. * Update docstring and type usage. * Add info on get_candidates(), get_candidates_batched(). * Readd get_candidates info to v3 changelog. * Update website/docs/api/entitylinker.mdx Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update factory functions for backwards compatibility. * Format. * Ignore mypy error. * Fix mypy error. * Format. * Add test for multiple docs with multiple entities. --------- Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com> Co-authored-by: svlandeg <svlandeg@github.com>
266 lines
11 KiB
Plaintext
266 lines
11 KiB
Plaintext
---
|
|
title: InMemoryLookupKB
|
|
teaser:
|
|
The default implementation of the KnowledgeBase interface. Stores all
|
|
information in-memory.
|
|
tag: class
|
|
source: spacy/kb/kb_in_memory.pyx
|
|
version: 3.5
|
|
---
|
|
|
|
The `InMemoryLookupKB` class inherits from [`KnowledgeBase`](/api/kb) and
|
|
implements all of its methods. It stores all KB data in-memory and generates
|
|
[`InMemoryCandidate`](/api/kb#candidate) objects by exactly matching mentions
|
|
with entity names. It's highly optimized for both a low memory footprint and
|
|
speed of retrieval.
|
|
|
|
## InMemoryLookupKB.\_\_init\_\_ {id="init",tag="method"}
|
|
|
|
Create the knowledge base.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> from spacy.kb import InMemoryLookupKB
|
|
> vocab = nlp.vocab
|
|
> kb = InMemoryLookupKB(vocab=vocab, entity_vector_length=64)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ---------------------- | ------------------------------------------------ |
|
|
| `vocab` | The shared vocabulary. ~~Vocab~~ |
|
|
| `entity_vector_length` | Length of the fixed-size entity vectors. ~~int~~ |
|
|
|
|
## InMemoryLookupKB.entity_vector_length {id="entity_vector_length",tag="property"}
|
|
|
|
The length of the fixed-size entity vectors in the knowledge base.
|
|
|
|
| Name | Description |
|
|
| ----------- | ------------------------------------------------ |
|
|
| **RETURNS** | Length of the fixed-size entity vectors. ~~int~~ |
|
|
|
|
## InMemoryLookupKB.add_entity {id="add_entity",tag="method"}
|
|
|
|
Add an entity to the knowledge base, specifying its corpus frequency and entity
|
|
vector, which should be of length
|
|
[`entity_vector_length`](/api/inmemorylookupkb#entity_vector_length).
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> kb.add_entity(entity="Q42", freq=32, entity_vector=vector1)
|
|
> kb.add_entity(entity="Q463035", freq=111, entity_vector=vector2)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| --------------- | ---------------------------------------------------------- |
|
|
| `entity` | The unique entity identifier. ~~str~~ |
|
|
| `freq` | The frequency of the entity in a typical corpus. ~~float~~ |
|
|
| `entity_vector` | The pretrained vector of the entity. ~~numpy.ndarray~~ |
|
|
|
|
## InMemoryLookupKB.set_entities {id="set_entities",tag="method"}
|
|
|
|
Define the full list of entities in the knowledge base, specifying the corpus
|
|
frequency and entity vector for each entity.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> kb.set_entities(entity_list=["Q42", "Q463035"], freq_list=[32, 111], vector_list=[vector1, vector2])
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ------------- | ---------------------------------------------------------------- |
|
|
| `entity_list` | List of unique entity identifiers. ~~Iterable[Union[str, int]]~~ |
|
|
| `freq_list` | List of entity frequencies. ~~Iterable[int]~~ |
|
|
| `vector_list` | List of entity vectors. ~~Iterable[numpy.ndarray]~~ |
|
|
|
|
## InMemoryLookupKB.add_alias {id="add_alias",tag="method"}
|
|
|
|
Add an alias or mention to the knowledge base, specifying its potential KB
|
|
identifiers and their prior probabilities. The entity identifiers should refer
|
|
to entities previously added with
|
|
[`add_entity`](/api/inmemorylookupkb#add_entity) or
|
|
[`set_entities`](/api/inmemorylookupkb#set_entities). The sum of the prior
|
|
probabilities should not exceed 1. Note that an empty string can not be used as
|
|
alias.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> kb.add_alias(alias="Douglas", entities=["Q42", "Q463035"], probabilities=[0.6, 0.3])
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| --------------- | --------------------------------------------------------------------------------- |
|
|
| `alias` | The textual mention or alias. Can not be the empty string. ~~str~~ |
|
|
| `entities` | The potential entities that the alias may refer to. ~~Iterable[Union[str, int]]~~ |
|
|
| `probabilities` | The prior probabilities of each entity. ~~Iterable[float]~~ |
|
|
|
|
## InMemoryLookupKB.\_\_len\_\_ {id="len",tag="method"}
|
|
|
|
Get the total number of entities in the knowledge base.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> total_entities = len(kb)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | ----------------------------------------------------- |
|
|
| **RETURNS** | The number of entities in the knowledge base. ~~int~~ |
|
|
|
|
## InMemoryLookupKB.get_entity_strings {id="get_entity_strings",tag="method"}
|
|
|
|
Get a list of all entity IDs in the knowledge base.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> all_entities = kb.get_entity_strings()
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | --------------------------------------------------------- |
|
|
| **RETURNS** | The list of entities in the knowledge base. ~~List[str]~~ |
|
|
|
|
## InMemoryLookupKB.get_size_aliases {id="get_size_aliases",tag="method"}
|
|
|
|
Get the total number of aliases in the knowledge base.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> total_aliases = kb.get_size_aliases()
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | ---------------------------------------------------- |
|
|
| **RETURNS** | The number of aliases in the knowledge base. ~~int~~ |
|
|
|
|
## InMemoryLookupKB.get_alias_strings {id="get_alias_strings",tag="method"}
|
|
|
|
Get a list of all aliases in the knowledge base.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> all_aliases = kb.get_alias_strings()
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | -------------------------------------------------------- |
|
|
| **RETURNS** | The list of aliases in the knowledge base. ~~List[str]~~ |
|
|
|
|
## InMemoryLookupKB.get_candidates {id="get_candidates",tag="method"}
|
|
|
|
Given textual mentions for an arbitrary number of documents as input, retrieve a
|
|
list of candidate entities of type [`InMemoryCandidate`](/api/kb#candidate) for
|
|
each mention. The [`EntityLinker`](/api/entitylinker) component passes a
|
|
generator that yields mentions as [`SpanGroup`](/api/spangroup))s per document. The decision of how to batch
|
|
candidate retrieval lookups over multiple documents is left up to the
|
|
implementation of `KnowledgeBase.get_candidates()`.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> from spacy.lang.en import English
|
|
> from spacy.tokens import SpanGroup
|
|
> nlp = English()
|
|
> doc = nlp("Douglas Adams wrote 'The Hitchhiker's Guide to the Galaxy'.")
|
|
> candidates = kb.get_candidates([SpanGroup(doc, spans=[doc[0:2], doc[3:]]])
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `mentions` | The textual mentions or aliases (one `SpanGroup` per `Doc` instance). ~~Iterator[SpanGroup]~~ |
|
|
| **RETURNS** | An iterator over iterables of iterables with relevant [`InMemoryCandidate`](/api/kb#candidate) objects (per mention and doc). ~~Iterator[Iterable[Iterable[InMemoryCandidate]]]~~ |
|
|
|
|
## InMemoryLookupKB.get_vector {id="get_vector",tag="method"}
|
|
|
|
Given a certain entity ID, retrieve its pretrained entity vector.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> vector = kb.get_vector("Q42")
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | ------------------------------------ |
|
|
| `entity` | The entity ID. ~~str~~ |
|
|
| **RETURNS** | The entity vector. ~~numpy.ndarray~~ |
|
|
|
|
## InMemoryLookupKB.get_vectors {id="get_vectors",tag="method"}
|
|
|
|
Same as [`get_vector()`](/api/inmemorylookupkb#get_vector), but for an arbitrary
|
|
number of entity IDs.
|
|
|
|
The default implementation of `get_vectors()` executes `get_vector()` in a loop.
|
|
We recommend implementing a more efficient way to retrieve vectors for multiple
|
|
entities at once, if performance is of concern to you.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> vectors = kb.get_vectors(("Q42", "Q3107329"))
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | --------------------------------------------------------- |
|
|
| `entities` | The entity IDs. ~~Iterable[str]~~ |
|
|
| **RETURNS** | The entity vectors. ~~Iterable[Iterable[numpy.ndarray]]~~ |
|
|
|
|
## InMemoryLookupKB.get_prior_prob {id="get_prior_prob",tag="method"}
|
|
|
|
Given a certain entity ID and a certain textual mention, retrieve the prior
|
|
probability of the fact that the mention links to the entity ID.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> probability = kb.get_prior_prob("Q42", "Douglas")
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | ------------------------------------------------------------------------- |
|
|
| `entity` | The entity ID. ~~str~~ |
|
|
| `alias` | The textual mention or alias. ~~str~~ |
|
|
| **RETURNS** | The prior probability of the `alias` referring to the `entity`. ~~float~~ |
|
|
|
|
## InMemoryLookupKB.to_disk {id="to_disk",tag="method"}
|
|
|
|
Save the current state of the knowledge base to a directory.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> kb.to_disk(path)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| --------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
|
|
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
|
| `exclude` | List of components to exclude. ~~Iterable[str]~~ |
|
|
|
|
## InMemoryLookupKB.from_disk {id="from_disk",tag="method"}
|
|
|
|
Restore the state of the knowledge base from a given directory. Note that the
|
|
[`Vocab`](/api/vocab) should also be the same as the one used to create the KB.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> from spacy.vocab import Vocab
|
|
> vocab = Vocab().from_disk("/path/to/vocab")
|
|
> kb = InMemoryLookupKB(vocab=vocab, entity_vector_length=64)
|
|
> kb.from_disk("/path/to/kb")
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | ----------------------------------------------------------------------------------------------- |
|
|
| `loc` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
|
| `exclude` | List of components to exclude. ~~Iterable[str]~~ |
|
|
| **RETURNS** | The modified `KnowledgeBase` object. ~~KnowledgeBase~~ |
|