mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			60 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			60 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pytest
 | |
| 
 | |
| from spacy import util
 | |
| from spacy.lang.en import English
 | |
| from spacy.language import Language
 | |
| from spacy.tests.util import make_tempdir
 | |
| 
 | |
| 
 | |
| def test_label_types():
 | |
|     nlp = Language()
 | |
|     nlp.add_pipe(nlp.create_pipe("senter"))
 | |
|     with pytest.raises(NotImplementedError):
 | |
|         nlp.get_pipe("senter").add_label("A")
 | |
| 
 | |
| 
 | |
| SENT_STARTS = [0] * 14
 | |
| SENT_STARTS[0] = 1
 | |
| SENT_STARTS[5] = 1
 | |
| SENT_STARTS[9] = 1
 | |
| 
 | |
| TRAIN_DATA = [
 | |
|     (
 | |
|         "I like green eggs. Eat blue ham. I like purple eggs.",
 | |
|         {"sent_starts": SENT_STARTS},
 | |
|     ),
 | |
|     (
 | |
|         "She likes purple eggs. They hate ham. You like yellow eggs.",
 | |
|         {"sent_starts": SENT_STARTS},
 | |
|     ),
 | |
| ]
 | |
| 
 | |
| 
 | |
| def test_overfitting_IO():
 | |
|     # Simple test to try and quickly overfit the senter - ensuring the ML models work correctly
 | |
|     nlp = English()
 | |
|     senter = nlp.create_pipe("senter")
 | |
|     nlp.add_pipe(senter)
 | |
|     optimizer = nlp.begin_training()
 | |
| 
 | |
|     for i in range(200):
 | |
|         losses = {}
 | |
|         nlp.update(TRAIN_DATA, sgd=optimizer, losses=losses)
 | |
|     assert losses["senter"] < 0.001
 | |
| 
 | |
|     # test the trained model
 | |
|     test_text = TRAIN_DATA[0][0]
 | |
|     doc = nlp(test_text)
 | |
|     gold_sent_starts = [0] * 14
 | |
|     gold_sent_starts[0] = 1
 | |
|     gold_sent_starts[5] = 1
 | |
|     gold_sent_starts[9] = 1
 | |
|     assert [int(t.is_sent_start) for t in doc] == gold_sent_starts
 | |
| 
 | |
|     # Also test the results are still the same after IO
 | |
|     with make_tempdir() as tmp_dir:
 | |
|         nlp.to_disk(tmp_dir)
 | |
|         nlp2 = util.load_model_from_path(tmp_dir)
 | |
|         doc2 = nlp2(test_text)
 | |
|         assert [int(t.is_sent_start) for t in doc2] == gold_sent_starts
 |