mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-10 19:57:17 +03:00
30e1a89aeb
Now that `nlp.evaluate()` does not modify the examples, rerun the pipeline on the (limited) texts in order to provide the predicted annotation in the displacy output option.
205 lines
7.2 KiB
Python
205 lines
7.2 KiB
Python
from typing import Optional, List, Dict
|
|
from wasabi import Printer
|
|
from pathlib import Path
|
|
import re
|
|
import srsly
|
|
from thinc.api import fix_random_seed
|
|
|
|
from ..training import Corpus
|
|
from ..tokens import Doc
|
|
from ._util import app, Arg, Opt, setup_gpu, import_code
|
|
from ..scorer import Scorer
|
|
from .. import util
|
|
from .. import displacy
|
|
|
|
|
|
@app.command("evaluate")
|
|
def evaluate_cli(
|
|
# fmt: off
|
|
model: str = Arg(..., help="Model name or path"),
|
|
data_path: Path = Arg(..., help="Location of binary evaluation data in .spacy format", exists=True),
|
|
output: Optional[Path] = Opt(None, "--output", "-o", help="Output JSON file for metrics", dir_okay=False),
|
|
code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
|
|
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"),
|
|
gold_preproc: bool = Opt(False, "--gold-preproc", "-G", help="Use gold preprocessing"),
|
|
displacy_path: Optional[Path] = Opt(None, "--displacy-path", "-dp", help="Directory to output rendered parses as HTML", exists=True, file_okay=False),
|
|
displacy_limit: int = Opt(25, "--displacy-limit", "-dl", help="Limit of parses to render as HTML"),
|
|
# fmt: on
|
|
):
|
|
"""
|
|
Evaluate a trained pipeline. Expects a loadable spaCy pipeline and evaluation
|
|
data in the binary .spacy format. The --gold-preproc option sets up the
|
|
evaluation examples with gold-standard sentences and tokens for the
|
|
predictions. Gold preprocessing helps the annotations align to the
|
|
tokenization, and may result in sequences of more consistent length. However,
|
|
it may reduce runtime accuracy due to train/test skew. To render a sample of
|
|
dependency parses in a HTML file, set as output directory as the
|
|
displacy_path argument.
|
|
|
|
DOCS: https://spacy.io/api/cli#evaluate
|
|
"""
|
|
import_code(code_path)
|
|
evaluate(
|
|
model,
|
|
data_path,
|
|
output=output,
|
|
use_gpu=use_gpu,
|
|
gold_preproc=gold_preproc,
|
|
displacy_path=displacy_path,
|
|
displacy_limit=displacy_limit,
|
|
silent=False,
|
|
)
|
|
|
|
|
|
def evaluate(
|
|
model: str,
|
|
data_path: Path,
|
|
output: Optional[Path] = None,
|
|
use_gpu: int = -1,
|
|
gold_preproc: bool = False,
|
|
displacy_path: Optional[Path] = None,
|
|
displacy_limit: int = 25,
|
|
silent: bool = True,
|
|
) -> Scorer:
|
|
msg = Printer(no_print=silent, pretty=not silent)
|
|
fix_random_seed()
|
|
setup_gpu(use_gpu)
|
|
data_path = util.ensure_path(data_path)
|
|
output_path = util.ensure_path(output)
|
|
displacy_path = util.ensure_path(displacy_path)
|
|
if not data_path.exists():
|
|
msg.fail("Evaluation data not found", data_path, exits=1)
|
|
if displacy_path and not displacy_path.exists():
|
|
msg.fail("Visualization output directory not found", displacy_path, exits=1)
|
|
corpus = Corpus(data_path, gold_preproc=gold_preproc)
|
|
nlp = util.load_model(model)
|
|
dev_dataset = list(corpus(nlp))
|
|
scores = nlp.evaluate(dev_dataset)
|
|
metrics = {
|
|
"TOK": "token_acc",
|
|
"TAG": "tag_acc",
|
|
"POS": "pos_acc",
|
|
"MORPH": "morph_acc",
|
|
"LEMMA": "lemma_acc",
|
|
"UAS": "dep_uas",
|
|
"LAS": "dep_las",
|
|
"NER P": "ents_p",
|
|
"NER R": "ents_r",
|
|
"NER F": "ents_f",
|
|
"TEXTCAT": "cats_score",
|
|
"SENT P": "sents_p",
|
|
"SENT R": "sents_r",
|
|
"SENT F": "sents_f",
|
|
"SPEED": "speed",
|
|
}
|
|
results = {}
|
|
data = {}
|
|
for metric, key in metrics.items():
|
|
if key in scores:
|
|
if key == "cats_score":
|
|
metric = metric + " (" + scores.get("cats_score_desc", "unk") + ")"
|
|
if isinstance(scores[key], (int, float)):
|
|
if key == "speed":
|
|
results[metric] = f"{scores[key]:.0f}"
|
|
else:
|
|
results[metric] = f"{scores[key]*100:.2f}"
|
|
else:
|
|
results[metric] = "-"
|
|
data[re.sub(r"[\s/]", "_", key.lower())] = scores[key]
|
|
|
|
msg.table(results, title="Results")
|
|
|
|
if "morph_per_feat" in scores:
|
|
if scores["morph_per_feat"]:
|
|
print_prf_per_type(msg, scores["morph_per_feat"], "MORPH", "feat")
|
|
data["morph_per_feat"] = scores["morph_per_feat"]
|
|
if "dep_las_per_type" in scores:
|
|
if scores["dep_las_per_type"]:
|
|
print_prf_per_type(msg, scores["dep_las_per_type"], "LAS", "type")
|
|
data["dep_las_per_type"] = scores["dep_las_per_type"]
|
|
if "ents_per_type" in scores:
|
|
if scores["ents_per_type"]:
|
|
print_prf_per_type(msg, scores["ents_per_type"], "NER", "type")
|
|
data["ents_per_type"] = scores["ents_per_type"]
|
|
if "cats_f_per_type" in scores:
|
|
if scores["cats_f_per_type"]:
|
|
print_prf_per_type(msg, scores["cats_f_per_type"], "Textcat F", "label")
|
|
data["cats_f_per_type"] = scores["cats_f_per_type"]
|
|
if "cats_auc_per_type" in scores:
|
|
if scores["cats_auc_per_type"]:
|
|
print_textcats_auc_per_cat(msg, scores["cats_auc_per_type"])
|
|
data["cats_auc_per_type"] = scores["cats_auc_per_type"]
|
|
|
|
if displacy_path:
|
|
factory_names = [nlp.get_pipe_meta(pipe).factory for pipe in nlp.pipe_names]
|
|
docs = list(nlp.pipe(ex.reference.text for ex in dev_dataset[:displacy_limit]))
|
|
render_deps = "parser" in factory_names
|
|
render_ents = "ner" in factory_names
|
|
render_parses(
|
|
docs,
|
|
displacy_path,
|
|
model_name=model,
|
|
limit=displacy_limit,
|
|
deps=render_deps,
|
|
ents=render_ents,
|
|
)
|
|
msg.good(f"Generated {displacy_limit} parses as HTML", displacy_path)
|
|
|
|
if output_path is not None:
|
|
srsly.write_json(output_path, data)
|
|
msg.good(f"Saved results to {output_path}")
|
|
return data
|
|
|
|
|
|
def render_parses(
|
|
docs: List[Doc],
|
|
output_path: Path,
|
|
model_name: str = "",
|
|
limit: int = 250,
|
|
deps: bool = True,
|
|
ents: bool = True,
|
|
):
|
|
docs[0].user_data["title"] = model_name
|
|
if ents:
|
|
html = displacy.render(docs[:limit], style="ent", page=True)
|
|
with (output_path / "entities.html").open("w", encoding="utf8") as file_:
|
|
file_.write(html)
|
|
if deps:
|
|
html = displacy.render(
|
|
docs[:limit], style="dep", page=True, options={"compact": True}
|
|
)
|
|
with (output_path / "parses.html").open("w", encoding="utf8") as file_:
|
|
file_.write(html)
|
|
|
|
|
|
def print_prf_per_type(
|
|
msg: Printer, scores: Dict[str, Dict[str, float]], name: str, type: str
|
|
) -> None:
|
|
data = []
|
|
for key, value in scores.items():
|
|
row = [key]
|
|
for k in ("p", "r", "f"):
|
|
v = value[k]
|
|
row.append(f"{v * 100:.2f}" if isinstance(v, (int, float)) else v)
|
|
data.append(row)
|
|
msg.table(
|
|
data,
|
|
header=("", "P", "R", "F"),
|
|
aligns=("l", "r", "r", "r"),
|
|
title=f"{name} (per {type})",
|
|
)
|
|
|
|
|
|
def print_textcats_auc_per_cat(
|
|
msg: Printer, scores: Dict[str, Dict[str, float]]
|
|
) -> None:
|
|
msg.table(
|
|
[
|
|
(k, f"{v:.2f}" if isinstance(v, (float, int)) else v)
|
|
for k, v in scores.items()
|
|
],
|
|
header=("", "ROC AUC"),
|
|
aligns=("l", "r"),
|
|
title="Textcat ROC AUC (per label)",
|
|
)
|