mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	* Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
		
			
				
	
	
		
			93 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			93 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import Optional, Sequence, Union, Iterator
 | |
| import tqdm
 | |
| from pathlib import Path
 | |
| import srsly
 | |
| import cProfile
 | |
| import pstats
 | |
| import sys
 | |
| import itertools
 | |
| from wasabi import msg, Printer
 | |
| import typer
 | |
| 
 | |
| from ._util import app, debug_cli, Arg, Opt, NAME
 | |
| from ..language import Language
 | |
| from ..util import load_model
 | |
| 
 | |
| 
 | |
| @debug_cli.command("profile")
 | |
| @app.command("profile", hidden=True)
 | |
| def profile_cli(
 | |
|     # fmt: off
 | |
|     ctx: typer.Context,  # This is only used to read current calling context
 | |
|     model: str = Arg(..., help="Model to load"),
 | |
|     inputs: Optional[Path] = Arg(None, help="Location of input file. '-' for stdin.", exists=True, allow_dash=True),
 | |
|     n_texts: int = Opt(10000, "--n-texts", "-n", help="Maximum number of texts to use if available"),
 | |
|     # fmt: on
 | |
| ):
 | |
|     """
 | |
|     Profile which functions take the most time in a spaCy pipeline.
 | |
|     Input should be formatted as one JSON object per line with a key "text".
 | |
|     It can either be provided as a JSONL file, or be read from sys.sytdin.
 | |
|     If no input file is specified, the IMDB dataset is loaded via Thinc.
 | |
|     """
 | |
|     if ctx.parent.command.name == NAME:  # called as top-level command
 | |
|         msg.warn(
 | |
|             "The profile command is now available via the 'debug profile' "
 | |
|             "subcommand. You can run python -m spacy debug --help for an "
 | |
|             "overview of the other available debugging commands."
 | |
|         )
 | |
|     profile(model, inputs=inputs, n_texts=n_texts)
 | |
| 
 | |
| 
 | |
| def profile(model: str, inputs: Optional[Path] = None, n_texts: int = 10000) -> None:
 | |
| 
 | |
|     if inputs is not None:
 | |
|         inputs = _read_inputs(inputs, msg)
 | |
|     if inputs is None:
 | |
|         try:
 | |
|             import ml_datasets
 | |
|         except ImportError:
 | |
|             msg.fail(
 | |
|                 "This command, when run without an input file, "
 | |
|                 "requires the ml_datasets library to be installed: "
 | |
|                 "pip install ml_datasets",
 | |
|                 exits=1,
 | |
|             )
 | |
| 
 | |
|         n_inputs = 25000
 | |
|         with msg.loading("Loading IMDB dataset via Thinc..."):
 | |
|             imdb_train, _ = ml_datasets.imdb()
 | |
|             inputs, _ = zip(*imdb_train)
 | |
|         msg.info(f"Loaded IMDB dataset and using {n_inputs} examples")
 | |
|         inputs = inputs[:n_inputs]
 | |
|     with msg.loading(f"Loading model '{model}'..."):
 | |
|         nlp = load_model(model)
 | |
|     msg.good(f"Loaded model '{model}'")
 | |
|     texts = list(itertools.islice(inputs, n_texts))
 | |
|     cProfile.runctx("parse_texts(nlp, texts)", globals(), locals(), "Profile.prof")
 | |
|     s = pstats.Stats("Profile.prof")
 | |
|     msg.divider("Profile stats")
 | |
|     s.strip_dirs().sort_stats("time").print_stats()
 | |
| 
 | |
| 
 | |
| def parse_texts(nlp: Language, texts: Sequence[str]) -> None:
 | |
|     for doc in nlp.pipe(tqdm.tqdm(texts), batch_size=16):
 | |
|         pass
 | |
| 
 | |
| 
 | |
| def _read_inputs(loc: Union[Path, str], msg: Printer) -> Iterator[str]:
 | |
|     if loc == "-":
 | |
|         msg.info("Reading input from sys.stdin")
 | |
|         file_ = sys.stdin
 | |
|         file_ = (line.encode("utf8") for line in file_)
 | |
|     else:
 | |
|         input_path = Path(loc)
 | |
|         if not input_path.exists() or not input_path.is_file():
 | |
|             msg.fail("Not a valid input data file", loc, exits=1)
 | |
|         msg.info(f"Using data from {input_path.parts[-1]}")
 | |
|         file_ = input_path.open()
 | |
|     for line in file_:
 | |
|         data = srsly.json_loads(line)
 | |
|         text = data["text"]
 | |
|         yield text
 |