mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-10 01:06:33 +03:00
e2b70df012
* Use isort with Black profile * isort all the things * Fix import cycles as a result of import sorting * Add DOCBIN_ALL_ATTRS type definition * Add isort to requirements * Remove isort from build dependencies check * Typo
110 lines
3.9 KiB
Python
110 lines
3.9 KiB
Python
import pytest
|
|
|
|
from spacy.tokens import Doc
|
|
|
|
pytestmark = pytest.mark.filterwarnings("ignore::DeprecationWarning")
|
|
|
|
|
|
def test_ru_doc_lemmatization(ru_lemmatizer):
|
|
words = ["мама", "мыла", "раму"]
|
|
pos = ["NOUN", "VERB", "NOUN"]
|
|
morphs = [
|
|
"Animacy=Anim|Case=Nom|Gender=Fem|Number=Sing",
|
|
"Aspect=Imp|Gender=Fem|Mood=Ind|Number=Sing|Tense=Past|VerbForm=Fin|Voice=Act",
|
|
"Animacy=Anim|Case=Acc|Gender=Fem|Number=Sing",
|
|
]
|
|
doc = Doc(ru_lemmatizer.vocab, words=words, pos=pos, morphs=morphs)
|
|
doc = ru_lemmatizer(doc)
|
|
lemmas = [token.lemma_ for token in doc]
|
|
assert lemmas == ["мама", "мыть", "рама"]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"text,lemmas",
|
|
[
|
|
("гвоздики", ["гвоздик", "гвоздика"]),
|
|
("люди", ["человек"]),
|
|
("реки", ["река"]),
|
|
("кольцо", ["кольцо"]),
|
|
("пепперони", ["пепперони"]),
|
|
],
|
|
)
|
|
def test_ru_lemmatizer_noun_lemmas(ru_lemmatizer, text, lemmas):
|
|
doc = Doc(ru_lemmatizer.vocab, words=[text], pos=["NOUN"])
|
|
result_lemmas = ru_lemmatizer.pymorphy2_lemmatize(doc[0])
|
|
assert sorted(result_lemmas) == lemmas
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"text,pos,morph,lemma",
|
|
[
|
|
("рой", "NOUN", "", "рой"),
|
|
("рой", "VERB", "", "рыть"),
|
|
("клей", "NOUN", "", "клей"),
|
|
("клей", "VERB", "", "клеить"),
|
|
("три", "NUM", "", "три"),
|
|
("кос", "NOUN", "Number=Sing", "кос"),
|
|
("кос", "NOUN", "Number=Plur", "коса"),
|
|
("кос", "ADJ", "", "косой"),
|
|
("потом", "NOUN", "", "пот"),
|
|
("потом", "ADV", "", "потом"),
|
|
],
|
|
)
|
|
def test_ru_lemmatizer_works_with_different_pos_homonyms(
|
|
ru_lemmatizer, text, pos, morph, lemma
|
|
):
|
|
doc = Doc(ru_lemmatizer.vocab, words=[text], pos=[pos], morphs=[morph])
|
|
result_lemmas = ru_lemmatizer.pymorphy2_lemmatize(doc[0])
|
|
assert result_lemmas == [lemma]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"text,morph,lemma",
|
|
[
|
|
("гвоздики", "Gender=Fem", "гвоздика"),
|
|
("гвоздики", "Gender=Masc", "гвоздик"),
|
|
("вина", "Gender=Fem", "вина"),
|
|
("вина", "Gender=Neut", "вино"),
|
|
],
|
|
)
|
|
def test_ru_lemmatizer_works_with_noun_homonyms(ru_lemmatizer, text, morph, lemma):
|
|
doc = Doc(ru_lemmatizer.vocab, words=[text], pos=["NOUN"], morphs=[morph])
|
|
result_lemmas = ru_lemmatizer.pymorphy2_lemmatize(doc[0])
|
|
assert result_lemmas == [lemma]
|
|
|
|
|
|
def test_ru_lemmatizer_punct(ru_lemmatizer):
|
|
doc = Doc(ru_lemmatizer.vocab, words=["«"], pos=["PUNCT"])
|
|
assert ru_lemmatizer.pymorphy2_lemmatize(doc[0]) == ['"']
|
|
doc = Doc(ru_lemmatizer.vocab, words=["»"], pos=["PUNCT"])
|
|
assert ru_lemmatizer.pymorphy2_lemmatize(doc[0]) == ['"']
|
|
|
|
|
|
def test_ru_doc_lookup_lemmatization(ru_lookup_lemmatizer):
|
|
assert ru_lookup_lemmatizer.mode == "pymorphy3_lookup"
|
|
words = ["мама", "мыла", "раму"]
|
|
pos = ["NOUN", "VERB", "NOUN"]
|
|
morphs = [
|
|
"Animacy=Anim|Case=Nom|Gender=Fem|Number=Sing",
|
|
"Aspect=Imp|Gender=Fem|Mood=Ind|Number=Sing|Tense=Past|VerbForm=Fin|Voice=Act",
|
|
"Animacy=Anim|Case=Acc|Gender=Fem|Number=Sing",
|
|
]
|
|
doc = Doc(ru_lookup_lemmatizer.vocab, words=words, pos=pos, morphs=morphs)
|
|
doc = ru_lookup_lemmatizer(doc)
|
|
lemmas = [token.lemma_ for token in doc]
|
|
assert lemmas == ["мама", "мыла", "раму"]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"word,lemma",
|
|
(
|
|
("бременем", "бремя"),
|
|
("будешь", "быть"),
|
|
("какая-то", "какой-то"),
|
|
),
|
|
)
|
|
def test_ru_lookup_lemmatizer(ru_lookup_lemmatizer, word, lemma):
|
|
assert ru_lookup_lemmatizer.mode == "pymorphy3_lookup"
|
|
doc = Doc(ru_lookup_lemmatizer.vocab, words=[word])
|
|
assert ru_lookup_lemmatizer(doc)[0].lemma_ == lemma
|