mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			281 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			281 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# coding: utf-8
 | 
						|
from __future__ import unicode_literals
 | 
						|
 | 
						|
 | 
						|
import pytest
 | 
						|
import numpy
 | 
						|
from spacy.tokens import Doc, Span
 | 
						|
from spacy.vocab import Vocab
 | 
						|
from spacy.errors import ModelsWarning
 | 
						|
from spacy.attrs import ENT_TYPE, ENT_IOB
 | 
						|
 | 
						|
from ..util import get_doc
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("text", [["one", "two", "three"]])
 | 
						|
def test_doc_api_compare_by_string_position(en_vocab, text):
 | 
						|
    doc = Doc(en_vocab, words=text)
 | 
						|
    # Get the tokens in this order, so their ID ordering doesn't match the idx
 | 
						|
    token3 = doc[-1]
 | 
						|
    token2 = doc[-2]
 | 
						|
    token1 = doc[-1]
 | 
						|
    token1, token2, token3 = doc
 | 
						|
    assert token1 < token2 < token3
 | 
						|
    assert not token1 > token2
 | 
						|
    assert token2 > token1
 | 
						|
    assert token2 <= token3
 | 
						|
    assert token3 >= token1
 | 
						|
 | 
						|
 | 
						|
def test_doc_api_getitem(en_tokenizer):
 | 
						|
    text = "Give it back! He pleaded."
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    assert tokens[0].text == "Give"
 | 
						|
    assert tokens[-1].text == "."
 | 
						|
    with pytest.raises(IndexError):
 | 
						|
        tokens[len(tokens)]
 | 
						|
 | 
						|
    def to_str(span):
 | 
						|
        return "/".join(token.text for token in span)
 | 
						|
 | 
						|
    span = tokens[1:1]
 | 
						|
    assert not to_str(span)
 | 
						|
    span = tokens[1:4]
 | 
						|
    assert to_str(span) == "it/back/!"
 | 
						|
    span = tokens[1:4:1]
 | 
						|
    assert to_str(span) == "it/back/!"
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        tokens[1:4:2]
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        tokens[1:4:-1]
 | 
						|
 | 
						|
    span = tokens[-3:6]
 | 
						|
    assert to_str(span) == "He/pleaded"
 | 
						|
    span = tokens[4:-1]
 | 
						|
    assert to_str(span) == "He/pleaded"
 | 
						|
    span = tokens[-5:-3]
 | 
						|
    assert to_str(span) == "back/!"
 | 
						|
    span = tokens[5:4]
 | 
						|
    assert span.start == span.end == 5 and not to_str(span)
 | 
						|
    span = tokens[4:-3]
 | 
						|
    assert span.start == span.end == 4 and not to_str(span)
 | 
						|
 | 
						|
    span = tokens[:]
 | 
						|
    assert to_str(span) == "Give/it/back/!/He/pleaded/."
 | 
						|
    span = tokens[4:]
 | 
						|
    assert to_str(span) == "He/pleaded/."
 | 
						|
    span = tokens[:4]
 | 
						|
    assert to_str(span) == "Give/it/back/!"
 | 
						|
    span = tokens[:-3]
 | 
						|
    assert to_str(span) == "Give/it/back/!"
 | 
						|
    span = tokens[-3:]
 | 
						|
    assert to_str(span) == "He/pleaded/."
 | 
						|
 | 
						|
    span = tokens[4:50]
 | 
						|
    assert to_str(span) == "He/pleaded/."
 | 
						|
    span = tokens[-50:4]
 | 
						|
    assert to_str(span) == "Give/it/back/!"
 | 
						|
    span = tokens[-50:-40]
 | 
						|
    assert span.start == span.end == 0 and not to_str(span)
 | 
						|
    span = tokens[40:50]
 | 
						|
    assert span.start == span.end == 7 and not to_str(span)
 | 
						|
 | 
						|
    span = tokens[1:4]
 | 
						|
    assert span[0].orth_ == "it"
 | 
						|
    subspan = span[:]
 | 
						|
    assert to_str(subspan) == "it/back/!"
 | 
						|
    subspan = span[:2]
 | 
						|
    assert to_str(subspan) == "it/back"
 | 
						|
    subspan = span[1:]
 | 
						|
    assert to_str(subspan) == "back/!"
 | 
						|
    subspan = span[:-1]
 | 
						|
    assert to_str(subspan) == "it/back"
 | 
						|
    subspan = span[-2:]
 | 
						|
    assert to_str(subspan) == "back/!"
 | 
						|
    subspan = span[1:2]
 | 
						|
    assert to_str(subspan) == "back"
 | 
						|
    subspan = span[-2:-1]
 | 
						|
    assert to_str(subspan) == "back"
 | 
						|
    subspan = span[-50:50]
 | 
						|
    assert to_str(subspan) == "it/back/!"
 | 
						|
    subspan = span[50:-50]
 | 
						|
    assert subspan.start == subspan.end == 4 and not to_str(subspan)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "text", ["Give it back! He pleaded.", " Give it back! He pleaded. "]
 | 
						|
)
 | 
						|
def test_doc_api_serialize(en_tokenizer, text):
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    new_tokens = Doc(tokens.vocab).from_bytes(tokens.to_bytes())
 | 
						|
    assert tokens.text == new_tokens.text
 | 
						|
    assert [t.text for t in tokens] == [t.text for t in new_tokens]
 | 
						|
    assert [t.orth for t in tokens] == [t.orth for t in new_tokens]
 | 
						|
 | 
						|
    new_tokens = Doc(tokens.vocab).from_bytes(
 | 
						|
        tokens.to_bytes(exclude=["tensor"]), exclude=["tensor"]
 | 
						|
    )
 | 
						|
    assert tokens.text == new_tokens.text
 | 
						|
    assert [t.text for t in tokens] == [t.text for t in new_tokens]
 | 
						|
    assert [t.orth for t in tokens] == [t.orth for t in new_tokens]
 | 
						|
 | 
						|
    new_tokens = Doc(tokens.vocab).from_bytes(
 | 
						|
        tokens.to_bytes(exclude=["sentiment"]), exclude=["sentiment"]
 | 
						|
    )
 | 
						|
    assert tokens.text == new_tokens.text
 | 
						|
    assert [t.text for t in tokens] == [t.text for t in new_tokens]
 | 
						|
    assert [t.orth for t in tokens] == [t.orth for t in new_tokens]
 | 
						|
 | 
						|
 | 
						|
def test_doc_api_set_ents(en_tokenizer):
 | 
						|
    text = "I use goggle chrone to surf the web"
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    assert len(tokens.ents) == 0
 | 
						|
    tokens.ents = [(tokens.vocab.strings["PRODUCT"], 2, 4)]
 | 
						|
    assert len(list(tokens.ents)) == 1
 | 
						|
    assert [t.ent_iob for t in tokens] == [0, 0, 3, 1, 0, 0, 0, 0]
 | 
						|
    assert tokens.ents[0].label_ == "PRODUCT"
 | 
						|
    assert tokens.ents[0].start == 2
 | 
						|
    assert tokens.ents[0].end == 4
 | 
						|
 | 
						|
 | 
						|
def test_doc_api_sents_empty_string(en_tokenizer):
 | 
						|
    doc = en_tokenizer("")
 | 
						|
    doc.is_parsed = True
 | 
						|
    sents = list(doc.sents)
 | 
						|
    assert len(sents) == 0
 | 
						|
 | 
						|
 | 
						|
def test_doc_api_runtime_error(en_tokenizer):
 | 
						|
    # Example that caused run-time error while parsing Reddit
 | 
						|
    # fmt: off
 | 
						|
    text = "67% of black households are single parent \n\n72% of all black babies born out of wedlock \n\n50% of all black kids don\u2019t finish high school"
 | 
						|
    deps = ["nsubj", "prep", "amod", "pobj", "ROOT", "amod", "attr", "",
 | 
						|
            "nummod", "prep", "det", "amod", "pobj", "acl", "prep", "prep",
 | 
						|
            "pobj", "", "nummod", "prep", "det", "amod", "pobj", "aux", "neg",
 | 
						|
            "ROOT", "amod", "dobj"]
 | 
						|
    # fmt: on
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    doc = get_doc(tokens.vocab, words=[t.text for t in tokens], deps=deps)
 | 
						|
    nps = []
 | 
						|
    for np in doc.noun_chunks:
 | 
						|
        while len(np) > 1 and np[0].dep_ not in ("advmod", "amod", "compound"):
 | 
						|
            np = np[1:]
 | 
						|
        if len(np) > 1:
 | 
						|
            nps.append(np)
 | 
						|
    with doc.retokenize() as retokenizer:
 | 
						|
        for np in nps:
 | 
						|
            attrs = {
 | 
						|
                "tag": np.root.tag_,
 | 
						|
                "lemma": np.text,
 | 
						|
                "ent_type": np.root.ent_type_,
 | 
						|
            }
 | 
						|
            retokenizer.merge(np, attrs=attrs)
 | 
						|
 | 
						|
 | 
						|
def test_doc_api_right_edge(en_tokenizer):
 | 
						|
    """Test for bug occurring from Unshift action, causing incorrect right edge"""
 | 
						|
    # fmt: off
 | 
						|
    text = "I have proposed to myself, for the sake of such as live under the government of the Romans, to translate those books into the Greek tongue."
 | 
						|
    heads = [2, 1, 0, -1, -1, -3, 15, 1, -2, -1, 1, -3, -1, -1, 1, -2, -1, 1,
 | 
						|
             -2, -7, 1, -19, 1, -2, -3, 2, 1, -3, -26]
 | 
						|
    # fmt: on
 | 
						|
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
 | 
						|
    assert doc[6].text == "for"
 | 
						|
    subtree = [w.text for w in doc[6].subtree]
 | 
						|
    assert subtree == [
 | 
						|
        "for",
 | 
						|
        "the",
 | 
						|
        "sake",
 | 
						|
        "of",
 | 
						|
        "such",
 | 
						|
        "as",
 | 
						|
        "live",
 | 
						|
        "under",
 | 
						|
        "the",
 | 
						|
        "government",
 | 
						|
        "of",
 | 
						|
        "the",
 | 
						|
        "Romans",
 | 
						|
        ",",
 | 
						|
    ]
 | 
						|
    assert doc[6].right_edge.text == ","
 | 
						|
 | 
						|
 | 
						|
def test_doc_api_has_vector():
 | 
						|
    vocab = Vocab()
 | 
						|
    vocab.reset_vectors(width=2)
 | 
						|
    vocab.set_vector("kitten", vector=numpy.asarray([0.0, 2.0], dtype="f"))
 | 
						|
    doc = Doc(vocab, words=["kitten"])
 | 
						|
    assert doc.has_vector
 | 
						|
 | 
						|
 | 
						|
def test_doc_api_similarity_match():
 | 
						|
    doc = Doc(Vocab(), words=["a"])
 | 
						|
    assert doc.similarity(doc[0]) == 1.0
 | 
						|
    assert doc.similarity(doc.vocab["a"]) == 1.0
 | 
						|
    doc2 = Doc(doc.vocab, words=["a", "b", "c"])
 | 
						|
    with pytest.warns(ModelsWarning):
 | 
						|
        assert doc.similarity(doc2[:1]) == 1.0
 | 
						|
        assert doc.similarity(doc2) == 0.0
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "sentence,heads,lca_matrix",
 | 
						|
    [
 | 
						|
        (
 | 
						|
            "the lazy dog slept",
 | 
						|
            [2, 1, 1, 0],
 | 
						|
            numpy.array([[0, 2, 2, 3], [2, 1, 2, 3], [2, 2, 2, 3], [3, 3, 3, 3]]),
 | 
						|
        ),
 | 
						|
        (
 | 
						|
            "The lazy dog slept. The quick fox jumped",
 | 
						|
            [2, 1, 1, 0, -1, 2, 1, 1, 0],
 | 
						|
            numpy.array(
 | 
						|
                [
 | 
						|
                    [0, 2, 2, 3, 3, -1, -1, -1, -1],
 | 
						|
                    [2, 1, 2, 3, 3, -1, -1, -1, -1],
 | 
						|
                    [2, 2, 2, 3, 3, -1, -1, -1, -1],
 | 
						|
                    [3, 3, 3, 3, 3, -1, -1, -1, -1],
 | 
						|
                    [3, 3, 3, 3, 4, -1, -1, -1, -1],
 | 
						|
                    [-1, -1, -1, -1, -1, 5, 7, 7, 8],
 | 
						|
                    [-1, -1, -1, -1, -1, 7, 6, 7, 8],
 | 
						|
                    [-1, -1, -1, -1, -1, 7, 7, 7, 8],
 | 
						|
                    [-1, -1, -1, -1, -1, 8, 8, 8, 8],
 | 
						|
                ]
 | 
						|
            ),
 | 
						|
        ),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_lowest_common_ancestor(en_tokenizer, sentence, heads, lca_matrix):
 | 
						|
    tokens = en_tokenizer(sentence)
 | 
						|
    doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads)
 | 
						|
    lca = doc.get_lca_matrix()
 | 
						|
    assert (lca == lca_matrix).all()
 | 
						|
    assert lca[1, 1] == 1
 | 
						|
    assert lca[0, 1] == 2
 | 
						|
    assert lca[1, 2] == 2
 | 
						|
 | 
						|
 | 
						|
def test_doc_is_nered(en_vocab):
 | 
						|
    words = ["I", "live", "in", "New", "York"]
 | 
						|
    doc = Doc(en_vocab, words=words)
 | 
						|
    assert not doc.is_nered
 | 
						|
    doc.ents = [Span(doc, 3, 5, label="GPE")]
 | 
						|
    assert doc.is_nered
 | 
						|
    # Test creating doc from array with unknown values
 | 
						|
    arr = numpy.array([[0, 0], [0, 0], [0, 0], [384, 3], [384, 1]], dtype="uint64")
 | 
						|
    doc = Doc(en_vocab, words=words).from_array([ENT_TYPE, ENT_IOB], arr)
 | 
						|
    assert doc.is_nered
 | 
						|
    # Test serialization
 | 
						|
    new_doc = Doc(en_vocab).from_bytes(doc.to_bytes())
 | 
						|
    assert new_doc.is_nered
 | 
						|
 | 
						|
 | 
						|
def test_doc_lang(en_vocab):
 | 
						|
    doc = Doc(en_vocab, words=["Hello", "world"])
 | 
						|
    assert doc.lang_ == "en"
 | 
						|
    assert doc.lang == en_vocab.strings["en"]
 |