mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	* Use isort with Black profile * isort all the things * Fix import cycles as a result of import sorting * Add DOCBIN_ALL_ATTRS type definition * Add isort to requirements * Remove isort from build dependencies check * Typo
		
			
				
	
	
		
			510 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			510 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import warnings
 | |
| 
 | |
| import pytest
 | |
| import srsly
 | |
| from mock import Mock
 | |
| 
 | |
| from spacy.lang.en import English
 | |
| from spacy.matcher import Matcher, PhraseMatcher
 | |
| from spacy.tokens import Doc, Span
 | |
| from spacy.vocab import Vocab
 | |
| 
 | |
| from ..util import make_tempdir
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(3248)
 | |
| def test_issue3248_1():
 | |
|     """Test that the PhraseMatcher correctly reports its number of rules, not
 | |
|     total number of patterns."""
 | |
|     nlp = English()
 | |
|     matcher = PhraseMatcher(nlp.vocab)
 | |
|     matcher.add("TEST1", [nlp("a"), nlp("b"), nlp("c")])
 | |
|     matcher.add("TEST2", [nlp("d")])
 | |
|     assert len(matcher) == 2
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(3331)
 | |
| def test_issue3331(en_vocab):
 | |
|     """Test that duplicate patterns for different rules result in multiple
 | |
|     matches, one per rule.
 | |
|     """
 | |
|     matcher = PhraseMatcher(en_vocab)
 | |
|     matcher.add("A", [Doc(en_vocab, words=["Barack", "Obama"])])
 | |
|     matcher.add("B", [Doc(en_vocab, words=["Barack", "Obama"])])
 | |
|     doc = Doc(en_vocab, words=["Barack", "Obama", "lifts", "America"])
 | |
|     matches = matcher(doc)
 | |
|     assert len(matches) == 2
 | |
|     match_ids = [en_vocab.strings[matches[0][0]], en_vocab.strings[matches[1][0]]]
 | |
|     assert sorted(match_ids) == ["A", "B"]
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(3972)
 | |
| def test_issue3972(en_vocab):
 | |
|     """Test that the PhraseMatcher returns duplicates for duplicate match IDs."""
 | |
|     matcher = PhraseMatcher(en_vocab)
 | |
|     matcher.add("A", [Doc(en_vocab, words=["New", "York"])])
 | |
|     matcher.add("B", [Doc(en_vocab, words=["New", "York"])])
 | |
|     doc = Doc(en_vocab, words=["I", "live", "in", "New", "York"])
 | |
|     matches = matcher(doc)
 | |
| 
 | |
|     assert len(matches) == 2
 | |
| 
 | |
|     # We should have a match for each of the two rules
 | |
|     found_ids = [en_vocab.strings[ent_id] for (ent_id, _, _) in matches]
 | |
|     assert "A" in found_ids
 | |
|     assert "B" in found_ids
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(4002)
 | |
| def test_issue4002(en_vocab):
 | |
|     """Test that the PhraseMatcher can match on overwritten NORM attributes."""
 | |
|     matcher = PhraseMatcher(en_vocab, attr="NORM")
 | |
|     pattern1 = Doc(en_vocab, words=["c", "d"])
 | |
|     assert [t.norm_ for t in pattern1] == ["c", "d"]
 | |
|     matcher.add("TEST", [pattern1])
 | |
|     doc = Doc(en_vocab, words=["a", "b", "c", "d"])
 | |
|     assert [t.norm_ for t in doc] == ["a", "b", "c", "d"]
 | |
|     matches = matcher(doc)
 | |
|     assert len(matches) == 1
 | |
|     matcher = PhraseMatcher(en_vocab, attr="NORM")
 | |
|     pattern2 = Doc(en_vocab, words=["1", "2"])
 | |
|     pattern2[0].norm_ = "c"
 | |
|     pattern2[1].norm_ = "d"
 | |
|     assert [t.norm_ for t in pattern2] == ["c", "d"]
 | |
|     matcher.add("TEST", [pattern2])
 | |
|     matches = matcher(doc)
 | |
|     assert len(matches) == 1
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(4373)
 | |
| def test_issue4373():
 | |
|     """Test that PhraseMatcher.vocab can be accessed (like Matcher.vocab)."""
 | |
|     matcher = Matcher(Vocab())
 | |
|     assert isinstance(matcher.vocab, Vocab)
 | |
|     matcher = PhraseMatcher(Vocab())
 | |
|     assert isinstance(matcher.vocab, Vocab)
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(4651)
 | |
| def test_issue4651_with_phrase_matcher_attr():
 | |
|     """Test that the EntityRuler PhraseMatcher is deserialized correctly using
 | |
|     the method from_disk when the EntityRuler argument phrase_matcher_attr is
 | |
|     specified.
 | |
|     """
 | |
|     text = "Spacy is a python library for nlp"
 | |
|     nlp = English()
 | |
|     patterns = [{"label": "PYTHON_LIB", "pattern": "spacy", "id": "spaCy"}]
 | |
|     ruler = nlp.add_pipe("entity_ruler", config={"phrase_matcher_attr": "LOWER"})
 | |
|     ruler.add_patterns(patterns)
 | |
|     doc = nlp(text)
 | |
|     res = [(ent.text, ent.label_, ent.ent_id_) for ent in doc.ents]
 | |
|     nlp_reloaded = English()
 | |
|     with make_tempdir() as d:
 | |
|         file_path = d / "entityruler"
 | |
|         ruler.to_disk(file_path)
 | |
|         nlp_reloaded.add_pipe("entity_ruler").from_disk(file_path)
 | |
|     doc_reloaded = nlp_reloaded(text)
 | |
|     res_reloaded = [(ent.text, ent.label_, ent.ent_id_) for ent in doc_reloaded.ents]
 | |
|     assert res == res_reloaded
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(6839)
 | |
| def test_issue6839(en_vocab):
 | |
|     """Ensure that PhraseMatcher accepts Span as input"""
 | |
|     # fmt: off
 | |
|     words = ["I", "like", "Spans", "and", "Docs", "in", "my", "input", ",", "and", "nothing", "else", "."]
 | |
|     # fmt: on
 | |
|     doc = Doc(en_vocab, words=words)
 | |
|     span = doc[:8]
 | |
|     pattern = Doc(en_vocab, words=["Spans", "and", "Docs"])
 | |
|     matcher = PhraseMatcher(en_vocab)
 | |
|     matcher.add("SPACY", [pattern])
 | |
|     matches = matcher(span)
 | |
|     assert matches
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(10643)
 | |
| def test_issue10643(en_vocab):
 | |
|     """Ensure overlapping terms can be removed from PhraseMatcher"""
 | |
| 
 | |
|     # fmt: off
 | |
|     words = ["Only", "save", "out", "the", "binary", "data", "for", "the", "individual", "components", "."]
 | |
|     # fmt: on
 | |
|     doc = Doc(en_vocab, words=words)
 | |
|     terms = {
 | |
|         "0": Doc(en_vocab, words=["binary"]),
 | |
|         "1": Doc(en_vocab, words=["binary", "data"]),
 | |
|     }
 | |
|     matcher = PhraseMatcher(en_vocab)
 | |
|     for match_id, term in terms.items():
 | |
|         matcher.add(match_id, [term])
 | |
| 
 | |
|     matches = matcher(doc)
 | |
|     assert matches == [(en_vocab.strings["0"], 4, 5), (en_vocab.strings["1"], 4, 6)]
 | |
| 
 | |
|     matcher.remove("0")
 | |
|     assert len(matcher) == 1
 | |
|     new_matches = matcher(doc)
 | |
|     assert new_matches == [(en_vocab.strings["1"], 4, 6)]
 | |
| 
 | |
|     matcher.remove("1")
 | |
|     assert len(matcher) == 0
 | |
|     no_matches = matcher(doc)
 | |
|     assert not no_matches
 | |
| 
 | |
| 
 | |
| def test_matcher_phrase_matcher(en_vocab):
 | |
|     doc = Doc(en_vocab, words=["I", "like", "Google", "Now", "best"])
 | |
|     # intermediate phrase
 | |
|     pattern = Doc(en_vocab, words=["Google", "Now"])
 | |
|     matcher = PhraseMatcher(en_vocab)
 | |
|     matcher.add("COMPANY", [pattern])
 | |
|     assert len(matcher(doc)) == 1
 | |
|     # initial token
 | |
|     pattern = Doc(en_vocab, words=["I"])
 | |
|     matcher = PhraseMatcher(en_vocab)
 | |
|     matcher.add("I", [pattern])
 | |
|     assert len(matcher(doc)) == 1
 | |
|     # initial phrase
 | |
|     pattern = Doc(en_vocab, words=["I", "like"])
 | |
|     matcher = PhraseMatcher(en_vocab)
 | |
|     matcher.add("ILIKE", [pattern])
 | |
|     assert len(matcher(doc)) == 1
 | |
|     # final token
 | |
|     pattern = Doc(en_vocab, words=["best"])
 | |
|     matcher = PhraseMatcher(en_vocab)
 | |
|     matcher.add("BEST", [pattern])
 | |
|     assert len(matcher(doc)) == 1
 | |
|     # final phrase
 | |
|     pattern = Doc(en_vocab, words=["Now", "best"])
 | |
|     matcher = PhraseMatcher(en_vocab)
 | |
|     matcher.add("NOWBEST", [pattern])
 | |
|     assert len(matcher(doc)) == 1
 | |
| 
 | |
| 
 | |
| def test_phrase_matcher_length(en_vocab):
 | |
|     matcher = PhraseMatcher(en_vocab)
 | |
|     assert len(matcher) == 0
 | |
|     matcher.add("TEST", [Doc(en_vocab, words=["test"])])
 | |
|     assert len(matcher) == 1
 | |
|     matcher.add("TEST2", [Doc(en_vocab, words=["test2"])])
 | |
|     assert len(matcher) == 2
 | |
| 
 | |
| 
 | |
| def test_phrase_matcher_contains(en_vocab):
 | |
|     matcher = PhraseMatcher(en_vocab)
 | |
|     matcher.add("TEST", [Doc(en_vocab, words=["test"])])
 | |
|     assert "TEST" in matcher
 | |
|     assert "TEST2" not in matcher
 | |
| 
 | |
| 
 | |
| def test_phrase_matcher_add_new_api(en_vocab):
 | |
|     doc = Doc(en_vocab, words=["a", "b"])
 | |
|     patterns = [Doc(en_vocab, words=["a"]), Doc(en_vocab, words=["a", "b"])]
 | |
|     matcher = PhraseMatcher(en_vocab)
 | |
|     matcher.add("OLD_API", None, *patterns)
 | |
|     assert len(matcher(doc)) == 2
 | |
|     matcher = PhraseMatcher(en_vocab)
 | |
|     on_match = Mock()
 | |
|     matcher.add("OLD_API_CALLBACK", on_match, *patterns)
 | |
|     assert len(matcher(doc)) == 2
 | |
|     assert on_match.call_count == 2
 | |
|     # New API: add(key: str, patterns: List[List[dict]], on_match: Callable)
 | |
|     matcher = PhraseMatcher(en_vocab)
 | |
|     matcher.add("NEW_API", patterns)
 | |
|     assert len(matcher(doc)) == 2
 | |
|     matcher = PhraseMatcher(en_vocab)
 | |
|     on_match = Mock()
 | |
|     matcher.add("NEW_API_CALLBACK", patterns, on_match=on_match)
 | |
|     assert len(matcher(doc)) == 2
 | |
|     assert on_match.call_count == 2
 | |
| 
 | |
| 
 | |
| def test_phrase_matcher_repeated_add(en_vocab):
 | |
|     matcher = PhraseMatcher(en_vocab)
 | |
|     # match ID only gets added once
 | |
|     matcher.add("TEST", [Doc(en_vocab, words=["like"])])
 | |
|     matcher.add("TEST", [Doc(en_vocab, words=["like"])])
 | |
|     matcher.add("TEST", [Doc(en_vocab, words=["like"])])
 | |
|     matcher.add("TEST", [Doc(en_vocab, words=["like"])])
 | |
|     doc = Doc(en_vocab, words=["I", "like", "Google", "Now", "best"])
 | |
|     assert "TEST" in matcher
 | |
|     assert "TEST2" not in matcher
 | |
|     assert len(matcher(doc)) == 1
 | |
| 
 | |
| 
 | |
| def test_phrase_matcher_remove(en_vocab):
 | |
|     matcher = PhraseMatcher(en_vocab)
 | |
|     matcher.add("TEST1", [Doc(en_vocab, words=["like"])])
 | |
|     matcher.add("TEST2", [Doc(en_vocab, words=["best"])])
 | |
|     doc = Doc(en_vocab, words=["I", "like", "Google", "Now", "best"])
 | |
|     assert "TEST1" in matcher
 | |
|     assert "TEST2" in matcher
 | |
|     assert "TEST3" not in matcher
 | |
|     assert len(matcher(doc)) == 2
 | |
|     matcher.remove("TEST1")
 | |
|     assert "TEST1" not in matcher
 | |
|     assert "TEST2" in matcher
 | |
|     assert "TEST3" not in matcher
 | |
|     assert len(matcher(doc)) == 1
 | |
|     matcher.remove("TEST2")
 | |
|     assert "TEST1" not in matcher
 | |
|     assert "TEST2" not in matcher
 | |
|     assert "TEST3" not in matcher
 | |
|     assert len(matcher(doc)) == 0
 | |
|     with pytest.raises(KeyError):
 | |
|         matcher.remove("TEST3")
 | |
|     assert "TEST1" not in matcher
 | |
|     assert "TEST2" not in matcher
 | |
|     assert "TEST3" not in matcher
 | |
|     assert len(matcher(doc)) == 0
 | |
| 
 | |
| 
 | |
| def test_phrase_matcher_overlapping_with_remove(en_vocab):
 | |
|     matcher = PhraseMatcher(en_vocab)
 | |
|     matcher.add("TEST", [Doc(en_vocab, words=["like"])])
 | |
|     # TEST2 is added alongside TEST
 | |
|     matcher.add("TEST2", [Doc(en_vocab, words=["like"])])
 | |
|     doc = Doc(en_vocab, words=["I", "like", "Google", "Now", "best"])
 | |
|     assert "TEST" in matcher
 | |
|     assert len(matcher) == 2
 | |
|     assert len(matcher(doc)) == 2
 | |
|     # removing TEST does not remove the entry for TEST2
 | |
|     matcher.remove("TEST")
 | |
|     assert "TEST" not in matcher
 | |
|     assert len(matcher) == 1
 | |
|     assert len(matcher(doc)) == 1
 | |
|     assert matcher(doc)[0][0] == en_vocab.strings["TEST2"]
 | |
|     # removing TEST2 removes all
 | |
|     matcher.remove("TEST2")
 | |
|     assert "TEST2" not in matcher
 | |
|     assert len(matcher) == 0
 | |
|     assert len(matcher(doc)) == 0
 | |
| 
 | |
| 
 | |
| def test_phrase_matcher_string_attrs(en_vocab):
 | |
|     words1 = ["I", "like", "cats"]
 | |
|     pos1 = ["PRON", "VERB", "NOUN"]
 | |
|     words2 = ["Yes", ",", "you", "hate", "dogs", "very", "much"]
 | |
|     pos2 = ["INTJ", "PUNCT", "PRON", "VERB", "NOUN", "ADV", "ADV"]
 | |
|     pattern = Doc(en_vocab, words=words1, pos=pos1)
 | |
|     matcher = PhraseMatcher(en_vocab, attr="POS")
 | |
|     matcher.add("TEST", [pattern])
 | |
|     doc = Doc(en_vocab, words=words2, pos=pos2)
 | |
|     matches = matcher(doc)
 | |
|     assert len(matches) == 1
 | |
|     match_id, start, end = matches[0]
 | |
|     assert match_id == en_vocab.strings["TEST"]
 | |
|     assert start == 2
 | |
|     assert end == 5
 | |
| 
 | |
| 
 | |
| def test_phrase_matcher_string_attrs_negative(en_vocab):
 | |
|     """Test that token with the control codes as ORTH are *not* matched."""
 | |
|     words1 = ["I", "like", "cats"]
 | |
|     pos1 = ["PRON", "VERB", "NOUN"]
 | |
|     words2 = ["matcher:POS-PRON", "matcher:POS-VERB", "matcher:POS-NOUN"]
 | |
|     pos2 = ["X", "X", "X"]
 | |
|     pattern = Doc(en_vocab, words=words1, pos=pos1)
 | |
|     matcher = PhraseMatcher(en_vocab, attr="POS")
 | |
|     matcher.add("TEST", [pattern])
 | |
|     doc = Doc(en_vocab, words=words2, pos=pos2)
 | |
|     matches = matcher(doc)
 | |
|     assert len(matches) == 0
 | |
| 
 | |
| 
 | |
| def test_phrase_matcher_bool_attrs(en_vocab):
 | |
|     words1 = ["Hello", "world", "!"]
 | |
|     words2 = ["No", "problem", ",", "he", "said", "."]
 | |
|     pattern = Doc(en_vocab, words=words1)
 | |
|     matcher = PhraseMatcher(en_vocab, attr="IS_PUNCT")
 | |
|     matcher.add("TEST", [pattern])
 | |
|     doc = Doc(en_vocab, words=words2)
 | |
|     matches = matcher(doc)
 | |
|     assert len(matches) == 2
 | |
|     match_id1, start1, end1 = matches[0]
 | |
|     match_id2, start2, end2 = matches[1]
 | |
|     assert match_id1 == en_vocab.strings["TEST"]
 | |
|     assert match_id2 == en_vocab.strings["TEST"]
 | |
|     assert start1 == 0
 | |
|     assert end1 == 3
 | |
|     assert start2 == 3
 | |
|     assert end2 == 6
 | |
| 
 | |
| 
 | |
| def test_phrase_matcher_validation(en_vocab):
 | |
|     doc1 = Doc(en_vocab, words=["Test"])
 | |
|     doc1[0].dep_ = "ROOT"
 | |
|     doc2 = Doc(en_vocab, words=["Test"])
 | |
|     doc2[0].tag_ = "TAG"
 | |
|     doc2[0].pos_ = "X"
 | |
|     doc2[0].set_morph("Feat=Val")
 | |
|     doc3 = Doc(en_vocab, words=["Test"])
 | |
|     matcher = PhraseMatcher(en_vocab, validate=True)
 | |
|     with pytest.warns(UserWarning):
 | |
|         matcher.add("TEST1", [doc1])
 | |
|     with pytest.warns(UserWarning):
 | |
|         matcher.add("TEST2", [doc2])
 | |
|     with warnings.catch_warnings():
 | |
|         warnings.simplefilter("error")
 | |
|         matcher.add("TEST3", [doc3])
 | |
|     matcher = PhraseMatcher(en_vocab, attr="POS", validate=True)
 | |
|     with warnings.catch_warnings():
 | |
|         warnings.simplefilter("error")
 | |
|         matcher.add("TEST4", [doc2])
 | |
| 
 | |
| 
 | |
| def test_attr_validation(en_vocab):
 | |
|     with pytest.raises(ValueError):
 | |
|         PhraseMatcher(en_vocab, attr="UNSUPPORTED")
 | |
| 
 | |
| 
 | |
| def test_attr_pipeline_checks(en_vocab):
 | |
|     doc1 = Doc(en_vocab, words=["Test"])
 | |
|     doc1[0].dep_ = "ROOT"
 | |
|     doc2 = Doc(en_vocab, words=["Test"])
 | |
|     doc2[0].tag_ = "TAG"
 | |
|     doc2[0].pos_ = "X"
 | |
|     doc2[0].set_morph("Feat=Val")
 | |
|     doc2[0].lemma_ = "LEMMA"
 | |
|     doc3 = Doc(en_vocab, words=["Test"])
 | |
|     # DEP requires DEP
 | |
|     matcher = PhraseMatcher(en_vocab, attr="DEP")
 | |
|     matcher.add("TEST1", [doc1])
 | |
|     with pytest.raises(ValueError):
 | |
|         matcher.add("TEST2", [doc2])
 | |
|     with pytest.raises(ValueError):
 | |
|         matcher.add("TEST3", [doc3])
 | |
|     # TAG, POS, LEMMA require those values
 | |
|     for attr in ("TAG", "POS", "LEMMA"):
 | |
|         matcher = PhraseMatcher(en_vocab, attr=attr)
 | |
|         matcher.add("TEST2", [doc2])
 | |
|         with pytest.raises(ValueError):
 | |
|             matcher.add("TEST1", [doc1])
 | |
|         with pytest.raises(ValueError):
 | |
|             matcher.add("TEST3", [doc3])
 | |
|     # TEXT/ORTH only require tokens
 | |
|     matcher = PhraseMatcher(en_vocab, attr="ORTH")
 | |
|     matcher.add("TEST3", [doc3])
 | |
|     matcher = PhraseMatcher(en_vocab, attr="TEXT")
 | |
|     matcher.add("TEST3", [doc3])
 | |
| 
 | |
| 
 | |
| def test_phrase_matcher_callback(en_vocab):
 | |
|     mock = Mock()
 | |
|     doc = Doc(en_vocab, words=["I", "like", "Google", "Now", "best"])
 | |
|     pattern = Doc(en_vocab, words=["Google", "Now"])
 | |
|     matcher = PhraseMatcher(en_vocab)
 | |
|     matcher.add("COMPANY", [pattern], on_match=mock)
 | |
|     matches = matcher(doc)
 | |
|     mock.assert_called_once_with(matcher, doc, 0, matches)
 | |
| 
 | |
| 
 | |
| def test_phrase_matcher_remove_overlapping_patterns(en_vocab):
 | |
|     matcher = PhraseMatcher(en_vocab)
 | |
|     pattern1 = Doc(en_vocab, words=["this"])
 | |
|     pattern2 = Doc(en_vocab, words=["this", "is"])
 | |
|     pattern3 = Doc(en_vocab, words=["this", "is", "a"])
 | |
|     pattern4 = Doc(en_vocab, words=["this", "is", "a", "word"])
 | |
|     matcher.add("THIS", [pattern1, pattern2, pattern3, pattern4])
 | |
|     matcher.remove("THIS")
 | |
| 
 | |
| 
 | |
| def test_phrase_matcher_basic_check(en_vocab):
 | |
|     matcher = PhraseMatcher(en_vocab)
 | |
|     # Potential mistake: pass in pattern instead of list of patterns
 | |
|     pattern = Doc(en_vocab, words=["hello", "world"])
 | |
|     with pytest.raises(ValueError):
 | |
|         matcher.add("TEST", pattern)
 | |
| 
 | |
| 
 | |
| def test_phrase_matcher_pickle(en_vocab):
 | |
|     matcher = PhraseMatcher(en_vocab)
 | |
|     mock = Mock()
 | |
|     matcher.add("TEST", [Doc(en_vocab, words=["test"])])
 | |
|     matcher.add("TEST2", [Doc(en_vocab, words=["test2"])], on_match=mock)
 | |
|     doc = Doc(en_vocab, words=["these", "are", "tests", ":", "test", "test2"])
 | |
|     assert len(matcher) == 2
 | |
| 
 | |
|     b = srsly.pickle_dumps(matcher)
 | |
|     matcher_unpickled = srsly.pickle_loads(b)
 | |
| 
 | |
|     # call after pickling to avoid recursion error related to mock
 | |
|     matches = matcher(doc)
 | |
|     matches_unpickled = matcher_unpickled(doc)
 | |
| 
 | |
|     assert len(matcher) == len(matcher_unpickled)
 | |
|     assert matches == matches_unpickled
 | |
| 
 | |
|     # clunky way to vaguely check that callback is unpickled
 | |
|     (vocab, docs, callbacks, attr) = matcher_unpickled.__reduce__()[1]
 | |
|     assert isinstance(callbacks.get("TEST2"), Mock)
 | |
| 
 | |
| 
 | |
| def test_phrase_matcher_as_spans(en_vocab):
 | |
|     """Test the new as_spans=True API."""
 | |
|     matcher = PhraseMatcher(en_vocab)
 | |
|     matcher.add("A", [Doc(en_vocab, words=["hello", "world"])])
 | |
|     matcher.add("B", [Doc(en_vocab, words=["test"])])
 | |
|     doc = Doc(en_vocab, words=["...", "hello", "world", "this", "is", "a", "test"])
 | |
|     matches = matcher(doc, as_spans=True)
 | |
|     assert len(matches) == 2
 | |
|     assert isinstance(matches[0], Span)
 | |
|     assert matches[0].text == "hello world"
 | |
|     assert matches[0].label_ == "A"
 | |
|     assert isinstance(matches[1], Span)
 | |
|     assert matches[1].text == "test"
 | |
|     assert matches[1].label_ == "B"
 | |
| 
 | |
| 
 | |
| def test_phrase_matcher_deprecated(en_vocab):
 | |
|     matcher = PhraseMatcher(en_vocab)
 | |
|     matcher.add("TEST", [Doc(en_vocab, words=["helllo"])])
 | |
|     doc = Doc(en_vocab, words=["hello", "world"])
 | |
|     with pytest.warns(DeprecationWarning) as record:
 | |
|         for _ in matcher.pipe([doc]):
 | |
|             pass
 | |
|         assert record.list
 | |
|         assert "spaCy v3.0" in str(record.list[0].message)
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("attr", ["SENT_START", "IS_SENT_START"])
 | |
| def test_phrase_matcher_sent_start(en_vocab, attr):
 | |
|     _ = PhraseMatcher(en_vocab, attr=attr)  # noqa: F841
 | |
| 
 | |
| 
 | |
| def test_span_in_phrasematcher(en_vocab):
 | |
|     """Ensure that PhraseMatcher accepts Span and Doc as input"""
 | |
|     # fmt: off
 | |
|     words = ["I", "like", "Spans", "and", "Docs", "in", "my", "input", ",", "and", "nothing", "else", "."]
 | |
|     # fmt: on
 | |
|     doc = Doc(en_vocab, words=words)
 | |
|     span = doc[:8]
 | |
|     pattern = Doc(en_vocab, words=["Spans", "and", "Docs"])
 | |
|     matcher = PhraseMatcher(en_vocab)
 | |
|     matcher.add("SPACY", [pattern])
 | |
|     matches_doc = matcher(doc)
 | |
|     matches_span = matcher(span)
 | |
|     assert len(matches_doc) == 1
 | |
|     assert len(matches_span) == 1
 | |
| 
 | |
| 
 | |
| def test_span_v_doc_in_phrasematcher(en_vocab):
 | |
|     """Ensure that PhraseMatcher only returns matches in input Span and not in entire Doc"""
 | |
|     # fmt: off
 | |
|     words = [
 | |
|         "I", "like", "Spans", "and", "Docs", "in", "my", "input", ",", "Spans",
 | |
|         "and", "Docs", "in", "my", "matchers", "," "and", "Spans", "and", "Docs",
 | |
|         "everywhere", "."
 | |
|     ]
 | |
|     # fmt: on
 | |
|     doc = Doc(en_vocab, words=words)
 | |
|     span = doc[9:15]  # second clause
 | |
|     pattern = Doc(en_vocab, words=["Spans", "and", "Docs"])
 | |
|     matcher = PhraseMatcher(en_vocab)
 | |
|     matcher.add("SPACY", [pattern])
 | |
|     matches_doc = matcher(doc)
 | |
|     matches_span = matcher(span)
 | |
|     assert len(matches_doc) == 3
 | |
|     assert len(matches_span) == 1
 |