mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	* Add `TrainablePipe.{distill,get_teacher_student_loss}`
This change adds two methods:
- `TrainablePipe::distill` which performs a training step of a
   student pipe on a teacher pipe, giving a batch of `Doc`s.
- `TrainablePipe::get_teacher_student_loss` computes the loss
  of a student relative to the teacher.
The `distill` or `get_teacher_student_loss` methods are also implemented
in the tagger, edit tree lemmatizer, and parser pipes, to enable
distillation in those pipes and as an example for other pipes.
* Fix stray `Beam` import
* Fix incorrect import
* Apply suggestions from code review
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* TrainablePipe.distill: use `Iterable[Example]`
* Add Pipe.is_distillable method
* Add `validate_distillation_examples`
This first calls `validate_examples` and then checks that the
student/teacher tokens are the same.
* Update distill documentation
* Add distill documentation for all pipes that support distillation
* Fix incorrect identifier
* Apply suggestions from code review
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Add comment to explain `is_distillable`
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
		
	
			
		
			
				
	
	
		
			135 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			135 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import cast
 | |
| import pytest
 | |
| from numpy.testing import assert_equal
 | |
| from spacy.attrs import SENT_START
 | |
| 
 | |
| from spacy import util
 | |
| from spacy.training import Example
 | |
| from spacy.lang.en import English
 | |
| from spacy.language import Language
 | |
| from spacy.pipeline import TrainablePipe
 | |
| from spacy.tests.util import make_tempdir
 | |
| 
 | |
| 
 | |
| def test_is_distillable():
 | |
|     nlp = English()
 | |
|     senter = nlp.add_pipe("senter")
 | |
|     assert senter.is_distillable
 | |
| 
 | |
| 
 | |
| def test_label_types():
 | |
|     nlp = Language()
 | |
|     senter = nlp.add_pipe("senter")
 | |
|     with pytest.raises(NotImplementedError):
 | |
|         senter.add_label("A")
 | |
| 
 | |
| 
 | |
| SENT_STARTS = [0] * 14
 | |
| SENT_STARTS[0] = 1
 | |
| SENT_STARTS[5] = 1
 | |
| SENT_STARTS[9] = 1
 | |
| 
 | |
| TRAIN_DATA = [
 | |
|     (
 | |
|         "I like green eggs. Eat blue ham. I like purple eggs.",
 | |
|         {"sent_starts": SENT_STARTS},
 | |
|     ),
 | |
|     (
 | |
|         "She likes purple eggs. They hate ham. You like yellow eggs.",
 | |
|         {"sent_starts": SENT_STARTS},
 | |
|     ),
 | |
| ]
 | |
| 
 | |
| 
 | |
| def test_initialize_examples():
 | |
|     nlp = Language()
 | |
|     nlp.add_pipe("senter")
 | |
|     train_examples = []
 | |
|     for t in TRAIN_DATA:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
 | |
|     # you shouldn't really call this more than once, but for testing it should be fine
 | |
|     nlp.initialize()
 | |
|     nlp.initialize(get_examples=lambda: train_examples)
 | |
|     with pytest.raises(TypeError):
 | |
|         nlp.initialize(get_examples=lambda: None)
 | |
|     with pytest.raises(TypeError):
 | |
|         nlp.initialize(get_examples=train_examples)
 | |
| 
 | |
| 
 | |
| def test_overfitting_IO():
 | |
|     # Simple test to try and quickly overfit the senter - ensuring the ML models work correctly
 | |
|     nlp = English()
 | |
|     train_examples = []
 | |
|     for t in TRAIN_DATA:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
 | |
|     # add some cases where SENT_START == -1
 | |
|     train_examples[0].reference[10].is_sent_start = False
 | |
|     train_examples[1].reference[1].is_sent_start = False
 | |
|     train_examples[1].reference[11].is_sent_start = False
 | |
| 
 | |
|     nlp.add_pipe("senter")
 | |
|     optimizer = nlp.initialize()
 | |
| 
 | |
|     for i in range(200):
 | |
|         losses = {}
 | |
|         nlp.update(train_examples, sgd=optimizer, losses=losses)
 | |
|     assert losses["senter"] < 0.001
 | |
| 
 | |
|     # test the trained model
 | |
|     test_text = TRAIN_DATA[0][0]
 | |
|     doc = nlp(test_text)
 | |
|     gold_sent_starts = [0] * 14
 | |
|     gold_sent_starts[0] = 1
 | |
|     gold_sent_starts[5] = 1
 | |
|     gold_sent_starts[9] = 1
 | |
|     assert [int(t.is_sent_start) for t in doc] == gold_sent_starts
 | |
| 
 | |
|     # Also test the results are still the same after IO
 | |
|     with make_tempdir() as tmp_dir:
 | |
|         nlp.to_disk(tmp_dir)
 | |
|         nlp2 = util.load_model_from_path(tmp_dir)
 | |
|         doc2 = nlp2(test_text)
 | |
|         assert [int(t.is_sent_start) for t in doc2] == gold_sent_starts
 | |
| 
 | |
|     # Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
 | |
|     texts = [
 | |
|         "Just a sentence.",
 | |
|         "Then one more sentence about London.",
 | |
|         "Here is another one.",
 | |
|         "I like London.",
 | |
|     ]
 | |
|     batch_deps_1 = [doc.to_array([SENT_START]) for doc in nlp.pipe(texts)]
 | |
|     batch_deps_2 = [doc.to_array([SENT_START]) for doc in nlp.pipe(texts)]
 | |
|     no_batch_deps = [
 | |
|         doc.to_array([SENT_START]) for doc in [nlp(text) for text in texts]
 | |
|     ]
 | |
|     assert_equal(batch_deps_1, batch_deps_2)
 | |
|     assert_equal(batch_deps_1, no_batch_deps)
 | |
| 
 | |
|     # test internal pipe labels vs. Language.pipe_labels with hidden labels
 | |
|     assert nlp.get_pipe("senter").labels == ("I", "S")
 | |
|     assert "senter" not in nlp.pipe_labels
 | |
| 
 | |
| 
 | |
| def test_save_activations():
 | |
|     # Test if activations are correctly added to Doc when requested.
 | |
|     nlp = English()
 | |
|     senter = cast(TrainablePipe, nlp.add_pipe("senter"))
 | |
| 
 | |
|     train_examples = []
 | |
|     for t in TRAIN_DATA:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
 | |
| 
 | |
|     nlp.initialize(get_examples=lambda: train_examples)
 | |
|     nO = senter.model.get_dim("nO")
 | |
| 
 | |
|     doc = nlp("This is a test.")
 | |
|     assert "senter" not in doc.activations
 | |
| 
 | |
|     senter.save_activations = True
 | |
|     doc = nlp("This is a test.")
 | |
|     assert "senter" in doc.activations
 | |
|     assert set(doc.activations["senter"].keys()) == {"label_ids", "probabilities"}
 | |
|     assert doc.activations["senter"]["probabilities"].shape == (5, nO)
 | |
|     assert doc.activations["senter"]["label_ids"].shape == (5,)
 |