mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	* fix grad_clip naming * cleaning up pretrained_vectors out of cfg * further refactoring Model init's * move Model building out of pipes * further refactor to require a model config when creating a pipe * small fixes * making cfg in nn_parser more consistent * fixing nr_class for parser * fixing nn_parser's nO * fix printing of loss * architectures in own file per type, consistent naming * convenience methods default_tagger_config and default_tok2vec_config * let create_pipe access default config if available for that component * default_parser_config * move defaults to separate folder * allow reading nlp from package or dir with argument 'name' * architecture spacy.VocabVectors.v1 to read static vectors from file * cleanup * default configs for nel, textcat, morphologizer, tensorizer * fix imports * fixing unit tests * fixes and clean up * fixing defaults, nO, fix unit tests * restore parser IO * fix IO * 'fix' serialization test * add *.cfg to manifest * fix example configs with additional arguments * replace Morpohologizer with Tagger * add IO bit when testing overfitting of tagger (currently failing) * fix IO - don't initialize when reading from disk * expand overfitting tests to also check IO goes OK * remove dropout from HashEmbed to fix Tagger performance * add defaults for sentrec * update thinc * always pass a Model instance to a Pipe * fix piped_added statement * remove obsolete W029 * remove obsolete errors * restore byte checking tests (work again) * clean up test * further test cleanup * convert from config to Model in create_pipe * bring back error when component is not initialized * cleanup * remove calls for nlp2.begin_training * use thinc.api in imports * allow setting charembed's nM and nC * fix for hardcoded nM/nC + unit test * formatting fixes * trigger build
		
			
				
	
	
		
			216 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			216 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pytest
 | |
| 
 | |
| from spacy.lang.en import English
 | |
| from ..util import get_doc, apply_transition_sequence, make_tempdir
 | |
| from ... import util
 | |
| 
 | |
| TRAIN_DATA = [
 | |
|     (
 | |
|         "They trade mortgage-backed securities.",
 | |
|         {
 | |
|             "heads": [1, 1, 4, 4, 5, 1, 1],
 | |
|             "deps": ["nsubj", "ROOT", "compound", "punct", "nmod", "dobj", "punct"],
 | |
|         },
 | |
|     ),
 | |
|     (
 | |
|         "I like London and Berlin.",
 | |
|         {
 | |
|             "heads": [1, 1, 1, 2, 2, 1],
 | |
|             "deps": ["nsubj", "ROOT", "dobj", "cc", "conj", "punct"],
 | |
|         },
 | |
|     ),
 | |
| ]
 | |
| 
 | |
| 
 | |
| def test_parser_root(en_tokenizer):
 | |
|     text = "i don't have other assistance"
 | |
|     heads = [3, 2, 1, 0, 1, -2]
 | |
|     deps = ["nsubj", "aux", "neg", "ROOT", "amod", "dobj"]
 | |
|     tokens = en_tokenizer(text)
 | |
|     doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
 | |
|     for t in doc:
 | |
|         assert t.dep != 0, t.text
 | |
| 
 | |
| 
 | |
| @pytest.mark.xfail
 | |
| @pytest.mark.parametrize("text", ["Hello"])
 | |
| def test_parser_parse_one_word_sentence(en_tokenizer, en_parser, text):
 | |
|     tokens = en_tokenizer(text)
 | |
|     doc = get_doc(
 | |
|         tokens.vocab, words=[t.text for t in tokens], heads=[0], deps=["ROOT"]
 | |
|     )
 | |
| 
 | |
|     assert len(doc) == 1
 | |
|     with en_parser.step_through(doc) as _:  # noqa: F841
 | |
|         pass
 | |
|     assert doc[0].dep != 0
 | |
| 
 | |
| 
 | |
| @pytest.mark.xfail
 | |
| def test_parser_initial(en_tokenizer, en_parser):
 | |
|     text = "I ate the pizza with anchovies."
 | |
|     # heads = [1, 0, 1, -2, -3, -1, -5]
 | |
|     transition = ["L-nsubj", "S", "L-det"]
 | |
|     tokens = en_tokenizer(text)
 | |
|     apply_transition_sequence(en_parser, tokens, transition)
 | |
|     assert tokens[0].head.i == 1
 | |
|     assert tokens[1].head.i == 1
 | |
|     assert tokens[2].head.i == 3
 | |
|     assert tokens[3].head.i == 3
 | |
| 
 | |
| 
 | |
| def test_parser_parse_subtrees(en_tokenizer, en_parser):
 | |
|     text = "The four wheels on the bus turned quickly"
 | |
|     heads = [2, 1, 4, -1, 1, -2, 0, -1]
 | |
|     tokens = en_tokenizer(text)
 | |
|     doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
 | |
|     assert len(list(doc[2].lefts)) == 2
 | |
|     assert len(list(doc[2].rights)) == 1
 | |
|     assert len(list(doc[2].children)) == 3
 | |
|     assert len(list(doc[5].lefts)) == 1
 | |
|     assert len(list(doc[5].rights)) == 0
 | |
|     assert len(list(doc[5].children)) == 1
 | |
|     assert len(list(doc[2].subtree)) == 6
 | |
| 
 | |
| 
 | |
| def test_parser_merge_pp(en_tokenizer):
 | |
|     text = "A phrase with another phrase occurs"
 | |
|     heads = [1, 4, -1, 1, -2, 0]
 | |
|     deps = ["det", "nsubj", "prep", "det", "pobj", "ROOT"]
 | |
|     tags = ["DT", "NN", "IN", "DT", "NN", "VBZ"]
 | |
|     tokens = en_tokenizer(text)
 | |
|     doc = get_doc(
 | |
|         tokens.vocab, words=[t.text for t in tokens], deps=deps, heads=heads, tags=tags
 | |
|     )
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         for np in doc.noun_chunks:
 | |
|             retokenizer.merge(np, attrs={"lemma": np.lemma_})
 | |
|     assert doc[0].text == "A phrase"
 | |
|     assert doc[1].text == "with"
 | |
|     assert doc[2].text == "another phrase"
 | |
|     assert doc[3].text == "occurs"
 | |
| 
 | |
| 
 | |
| @pytest.mark.xfail
 | |
| def test_parser_arc_eager_finalize_state(en_tokenizer, en_parser):
 | |
|     text = "a b c d e"
 | |
| 
 | |
|     # right branching
 | |
|     transition = ["R-nsubj", "D", "R-nsubj", "R-nsubj", "D", "R-ROOT"]
 | |
|     tokens = en_tokenizer(text)
 | |
|     apply_transition_sequence(en_parser, tokens, transition)
 | |
| 
 | |
|     assert tokens[0].n_lefts == 0
 | |
|     assert tokens[0].n_rights == 2
 | |
|     assert tokens[0].left_edge.i == 0
 | |
|     assert tokens[0].right_edge.i == 4
 | |
|     assert tokens[0].head.i == 0
 | |
| 
 | |
|     assert tokens[1].n_lefts == 0
 | |
|     assert tokens[1].n_rights == 0
 | |
|     assert tokens[1].left_edge.i == 1
 | |
|     assert tokens[1].right_edge.i == 1
 | |
|     assert tokens[1].head.i == 0
 | |
| 
 | |
|     assert tokens[2].n_lefts == 0
 | |
|     assert tokens[2].n_rights == 2
 | |
|     assert tokens[2].left_edge.i == 2
 | |
|     assert tokens[2].right_edge.i == 4
 | |
|     assert tokens[2].head.i == 0
 | |
| 
 | |
|     assert tokens[3].n_lefts == 0
 | |
|     assert tokens[3].n_rights == 0
 | |
|     assert tokens[3].left_edge.i == 3
 | |
|     assert tokens[3].right_edge.i == 3
 | |
|     assert tokens[3].head.i == 2
 | |
| 
 | |
|     assert tokens[4].n_lefts == 0
 | |
|     assert tokens[4].n_rights == 0
 | |
|     assert tokens[4].left_edge.i == 4
 | |
|     assert tokens[4].right_edge.i == 4
 | |
|     assert tokens[4].head.i == 2
 | |
| 
 | |
|     # left branching
 | |
|     transition = ["S", "S", "S", "L-nsubj", "L-nsubj", "L-nsubj", "L-nsubj"]
 | |
|     tokens = en_tokenizer(text)
 | |
|     apply_transition_sequence(en_parser, tokens, transition)
 | |
| 
 | |
|     assert tokens[0].n_lefts == 0
 | |
|     assert tokens[0].n_rights == 0
 | |
|     assert tokens[0].left_edge.i == 0
 | |
|     assert tokens[0].right_edge.i == 0
 | |
|     assert tokens[0].head.i == 4
 | |
| 
 | |
|     assert tokens[1].n_lefts == 0
 | |
|     assert tokens[1].n_rights == 0
 | |
|     assert tokens[1].left_edge.i == 1
 | |
|     assert tokens[1].right_edge.i == 1
 | |
|     assert tokens[1].head.i == 4
 | |
| 
 | |
|     assert tokens[2].n_lefts == 0
 | |
|     assert tokens[2].n_rights == 0
 | |
|     assert tokens[2].left_edge.i == 2
 | |
|     assert tokens[2].right_edge.i == 2
 | |
|     assert tokens[2].head.i == 4
 | |
| 
 | |
|     assert tokens[3].n_lefts == 0
 | |
|     assert tokens[3].n_rights == 0
 | |
|     assert tokens[3].left_edge.i == 3
 | |
|     assert tokens[3].right_edge.i == 3
 | |
|     assert tokens[3].head.i == 4
 | |
| 
 | |
|     assert tokens[4].n_lefts == 4
 | |
|     assert tokens[4].n_rights == 0
 | |
|     assert tokens[4].left_edge.i == 0
 | |
|     assert tokens[4].right_edge.i == 4
 | |
|     assert tokens[4].head.i == 4
 | |
| 
 | |
| 
 | |
| def test_parser_set_sent_starts(en_vocab):
 | |
|     # fmt: off
 | |
|     words = ['Ein', 'Satz', '.', 'Außerdem', 'ist', 'Zimmer', 'davon', 'überzeugt', ',', 'dass', 'auch', 'epige-', '\n', 'netische', 'Mechanismen', 'eine', 'Rolle', 'spielen', ',', 'also', 'Vorgänge', ',', 'die', '\n', 'sich', 'darauf', 'auswirken', ',', 'welche', 'Gene', 'abgelesen', 'werden', 'und', '\n', 'welche', 'nicht', '.', '\n']
 | |
|     heads = [1, 0, -1, 27, 0, -1, 1, -3, -1, 8, 4, 3, -1, 1, 3, 1, 1, -11, -1, 1, -9, -1, 4, -1, 2, 1, -6, -1, 1, 2, 1, -6, -1, -1, -17, -31, -32, -1]
 | |
|     deps = ['nk', 'ROOT', 'punct', 'mo', 'ROOT', 'sb', 'op', 'pd', 'punct', 'cp', 'mo', 'nk', '', 'nk', 'sb', 'nk', 'oa', 're', 'punct', 'mo', 'app', 'punct', 'sb', '', 'oa', 'op', 'rc', 'punct', 'nk', 'sb', 'oc', 're', 'cd', '', 'oa', 'ng', 'punct', '']
 | |
|     # fmt: on
 | |
|     doc = get_doc(en_vocab, words=words, deps=deps, heads=heads)
 | |
|     for i in range(len(words)):
 | |
|         if i == 0 or i == 3:
 | |
|             assert doc[i].is_sent_start is True
 | |
|         else:
 | |
|             assert doc[i].is_sent_start is None
 | |
|     for sent in doc.sents:
 | |
|         for token in sent:
 | |
|             assert token.head in sent
 | |
| 
 | |
| 
 | |
| def test_overfitting_IO():
 | |
|     # Simple test to try and quickly overfit the dependency parser - ensuring the ML models work correctly
 | |
|     nlp = English()
 | |
|     parser = nlp.create_pipe("parser")
 | |
|     for _, annotations in TRAIN_DATA:
 | |
|         for dep in annotations.get("deps", []):
 | |
|             parser.add_label(dep)
 | |
|     nlp.add_pipe(parser)
 | |
|     optimizer = nlp.begin_training()
 | |
| 
 | |
|     for i in range(50):
 | |
|         losses = {}
 | |
|         nlp.update(TRAIN_DATA, sgd=optimizer, losses=losses)
 | |
|     assert losses["parser"] < 0.00001
 | |
| 
 | |
|     # test the trained model
 | |
|     test_text = "I like securities."
 | |
|     doc = nlp(test_text)
 | |
|     assert doc[0].dep_ is "nsubj"
 | |
|     assert doc[2].dep_ is "dobj"
 | |
|     assert doc[3].dep_ is "punct"
 | |
| 
 | |
|     # Also test the results are still the same after IO
 | |
|     with make_tempdir() as tmp_dir:
 | |
|         nlp.to_disk(tmp_dir)
 | |
|         nlp2 = util.load_model_from_path(tmp_dir)
 | |
|         doc2 = nlp2(test_text)
 | |
|         assert doc2[0].dep_ is "nsubj"
 | |
|         assert doc2[2].dep_ is "dobj"
 | |
|         assert doc2[3].dep_ is "punct"
 |