mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			327 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			327 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pytest
 | |
| 
 | |
| from spacy.kb import KnowledgeBase
 | |
| 
 | |
| from spacy import util
 | |
| from spacy.lang.en import English
 | |
| from spacy.pipeline import EntityRuler
 | |
| from spacy.tests.util import make_tempdir
 | |
| from spacy.tokens import Span
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def nlp():
 | |
|     return English()
 | |
| 
 | |
| 
 | |
| def assert_almost_equal(a, b):
 | |
|     delta = 0.0001
 | |
|     assert a - delta <= b <= a + delta
 | |
| 
 | |
| 
 | |
| def test_kb_valid_entities(nlp):
 | |
|     """Test the valid construction of a KB with 3 entities and two aliases"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=19, entity_vector=[8, 4, 3])
 | |
|     mykb.add_entity(entity="Q2", freq=5, entity_vector=[2, 1, 0])
 | |
|     mykb.add_entity(entity="Q3", freq=25, entity_vector=[-1, -6, 5])
 | |
| 
 | |
|     # adding aliases
 | |
|     mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.2])
 | |
|     mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
 | |
| 
 | |
|     # test the size of the corresponding KB
 | |
|     assert mykb.get_size_entities() == 3
 | |
|     assert mykb.get_size_aliases() == 2
 | |
| 
 | |
|     # test retrieval of the entity vectors
 | |
|     assert mykb.get_vector("Q1") == [8, 4, 3]
 | |
|     assert mykb.get_vector("Q2") == [2, 1, 0]
 | |
|     assert mykb.get_vector("Q3") == [-1, -6, 5]
 | |
| 
 | |
|     # test retrieval of prior probabilities
 | |
|     assert_almost_equal(mykb.get_prior_prob(entity="Q2", alias="douglas"), 0.8)
 | |
|     assert_almost_equal(mykb.get_prior_prob(entity="Q3", alias="douglas"), 0.2)
 | |
|     assert_almost_equal(mykb.get_prior_prob(entity="Q342", alias="douglas"), 0.0)
 | |
|     assert_almost_equal(mykb.get_prior_prob(entity="Q3", alias="douglassssss"), 0.0)
 | |
| 
 | |
| 
 | |
| def test_kb_invalid_entities(nlp):
 | |
|     """Test the invalid construction of a KB with an alias linked to a non-existing entity"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
 | |
|     mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
 | |
|     mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
 | |
| 
 | |
|     # adding aliases - should fail because one of the given IDs is not valid
 | |
|     with pytest.raises(ValueError):
 | |
|         mykb.add_alias(
 | |
|             alias="douglas", entities=["Q2", "Q342"], probabilities=[0.8, 0.2]
 | |
|         )
 | |
| 
 | |
| 
 | |
| def test_kb_invalid_probabilities(nlp):
 | |
|     """Test the invalid construction of a KB with wrong prior probabilities"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
 | |
|     mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
 | |
|     mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
 | |
| 
 | |
|     # adding aliases - should fail because the sum of the probabilities exceeds 1
 | |
|     with pytest.raises(ValueError):
 | |
|         mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.4])
 | |
| 
 | |
| 
 | |
| def test_kb_invalid_combination(nlp):
 | |
|     """Test the invalid construction of a KB with non-matching entity and probability lists"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
 | |
|     mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
 | |
|     mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
 | |
| 
 | |
|     # adding aliases - should fail because the entities and probabilities vectors are not of equal length
 | |
|     with pytest.raises(ValueError):
 | |
|         mykb.add_alias(
 | |
|             alias="douglas", entities=["Q2", "Q3"], probabilities=[0.3, 0.4, 0.1]
 | |
|         )
 | |
| 
 | |
| 
 | |
| def test_kb_invalid_entity_vector(nlp):
 | |
|     """Test the invalid construction of a KB with non-matching entity vector lengths"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=19, entity_vector=[1, 2, 3])
 | |
| 
 | |
|     # this should fail because the kb's expected entity vector length is 3
 | |
|     with pytest.raises(ValueError):
 | |
|         mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
 | |
| 
 | |
| 
 | |
| def test_candidate_generation(nlp):
 | |
|     """Test correct candidate generation"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
 | |
|     mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
 | |
|     mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
 | |
| 
 | |
|     # adding aliases
 | |
|     mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1])
 | |
|     mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
 | |
| 
 | |
|     # test the size of the relevant candidates
 | |
|     assert len(mykb.get_candidates("douglas")) == 2
 | |
|     assert len(mykb.get_candidates("adam")) == 1
 | |
|     assert len(mykb.get_candidates("shrubbery")) == 0
 | |
| 
 | |
|     # test the content of the candidates
 | |
|     assert mykb.get_candidates("adam")[0].entity_ == "Q2"
 | |
|     assert mykb.get_candidates("adam")[0].alias_ == "adam"
 | |
|     assert_almost_equal(mykb.get_candidates("adam")[0].entity_freq, 12)
 | |
|     assert_almost_equal(mykb.get_candidates("adam")[0].prior_prob, 0.9)
 | |
| 
 | |
| 
 | |
| def test_append_alias(nlp):
 | |
|     """Test that we can append additional alias-entity pairs"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
 | |
|     mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
 | |
|     mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
 | |
| 
 | |
|     # adding aliases
 | |
|     mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.4, 0.1])
 | |
|     mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
 | |
| 
 | |
|     # test the size of the relevant candidates
 | |
|     assert len(mykb.get_candidates("douglas")) == 2
 | |
| 
 | |
|     # append an alias
 | |
|     mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.2)
 | |
| 
 | |
|     # test the size of the relevant candidates has been incremented
 | |
|     assert len(mykb.get_candidates("douglas")) == 3
 | |
| 
 | |
|     # append the same alias-entity pair again should not work (will throw a warning)
 | |
|     with pytest.warns(UserWarning):
 | |
|         mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.3)
 | |
| 
 | |
|     # test the size of the relevant candidates remained unchanged
 | |
|     assert len(mykb.get_candidates("douglas")) == 3
 | |
| 
 | |
| 
 | |
| def test_append_invalid_alias(nlp):
 | |
|     """Test that append an alias will throw an error if prior probs are exceeding 1"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
 | |
|     mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
 | |
|     mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
 | |
| 
 | |
|     # adding aliases
 | |
|     mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1])
 | |
|     mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
 | |
| 
 | |
|     # append an alias - should fail because the entities and probabilities vectors are not of equal length
 | |
|     with pytest.raises(ValueError):
 | |
|         mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.2)
 | |
| 
 | |
| 
 | |
| def test_preserving_links_asdoc(nlp):
 | |
|     """Test that Span.as_doc preserves the existing entity links"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
 | |
|     mykb.add_entity(entity="Q2", freq=8, entity_vector=[1])
 | |
| 
 | |
|     # adding aliases
 | |
|     mykb.add_alias(alias="Boston", entities=["Q1"], probabilities=[0.7])
 | |
|     mykb.add_alias(alias="Denver", entities=["Q2"], probabilities=[0.6])
 | |
| 
 | |
|     # set up pipeline with NER (Entity Ruler) and NEL (prior probability only, model not trained)
 | |
|     sentencizer = nlp.create_pipe("sentencizer")
 | |
|     nlp.add_pipe(sentencizer)
 | |
| 
 | |
|     ruler = EntityRuler(nlp)
 | |
|     patterns = [
 | |
|         {"label": "GPE", "pattern": "Boston"},
 | |
|         {"label": "GPE", "pattern": "Denver"},
 | |
|     ]
 | |
|     ruler.add_patterns(patterns)
 | |
|     nlp.add_pipe(ruler)
 | |
| 
 | |
|     cfg = {"kb": mykb, "incl_prior": False}
 | |
|     el_pipe = nlp.create_pipe(name="entity_linker", config=cfg)
 | |
|     el_pipe.begin_training()
 | |
|     el_pipe.incl_context = False
 | |
|     el_pipe.incl_prior = True
 | |
|     nlp.add_pipe(el_pipe, last=True)
 | |
| 
 | |
|     # test whether the entity links are preserved by the `as_doc()` function
 | |
|     text = "She lives in Boston. He lives in Denver."
 | |
|     doc = nlp(text)
 | |
|     for ent in doc.ents:
 | |
|         orig_text = ent.text
 | |
|         orig_kb_id = ent.kb_id_
 | |
|         sent_doc = ent.sent.as_doc()
 | |
|         for s_ent in sent_doc.ents:
 | |
|             if s_ent.text == orig_text:
 | |
|                 assert s_ent.kb_id_ == orig_kb_id
 | |
| 
 | |
| 
 | |
| def test_preserving_links_ents(nlp):
 | |
|     """Test that doc.ents preserves KB annotations"""
 | |
|     text = "She lives in Boston. He lives in Denver."
 | |
|     doc = nlp(text)
 | |
|     assert len(list(doc.ents)) == 0
 | |
| 
 | |
|     boston_ent = Span(doc, 3, 4, label="LOC", kb_id="Q1")
 | |
|     doc.ents = [boston_ent]
 | |
|     assert len(list(doc.ents)) == 1
 | |
|     assert list(doc.ents)[0].label_ == "LOC"
 | |
|     assert list(doc.ents)[0].kb_id_ == "Q1"
 | |
| 
 | |
| 
 | |
| def test_preserving_links_ents_2(nlp):
 | |
|     """Test that doc.ents preserves KB annotations"""
 | |
|     text = "She lives in Boston. He lives in Denver."
 | |
|     doc = nlp(text)
 | |
|     assert len(list(doc.ents)) == 0
 | |
| 
 | |
|     loc = doc.vocab.strings.add("LOC")
 | |
|     q1 = doc.vocab.strings.add("Q1")
 | |
| 
 | |
|     doc.ents = [(loc, q1, 3, 4)]
 | |
|     assert len(list(doc.ents)) == 1
 | |
|     assert list(doc.ents)[0].label_ == "LOC"
 | |
|     assert list(doc.ents)[0].kb_id_ == "Q1"
 | |
| 
 | |
| 
 | |
| # fmt: off
 | |
| TRAIN_DATA = [
 | |
|     ("Russ Cochran captured his first major title with his son as caddie.",
 | |
|         {"links": {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}},
 | |
|          "entities": [(0, 12, "PERSON")]}),
 | |
|     ("Russ Cochran his reprints include EC Comics.",
 | |
|         {"links": {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}},
 | |
|          "entities": [(0, 12, "PERSON")]}),
 | |
|     ("Russ Cochran has been publishing comic art.",
 | |
|         {"links": {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}},
 | |
|          "entities": [(0, 12, "PERSON")]}),
 | |
|     ("Russ Cochran was a member of University of Kentucky's golf team.",
 | |
|         {"links": {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}},
 | |
|          "entities": [(0, 12, "PERSON"), (43, 51, "LOC")]}),
 | |
| ]
 | |
| GOLD_entities = ["Q2146908", "Q7381115", "Q7381115", "Q2146908"]
 | |
| # fmt: on
 | |
| 
 | |
| 
 | |
| def test_overfitting_IO():
 | |
|     # Simple test to try and quickly overfit the NEL component - ensuring the ML models work correctly
 | |
|     nlp = English()
 | |
|     nlp.add_pipe(nlp.create_pipe('sentencizer'))
 | |
| 
 | |
|     # Add a custom component to recognize "Russ Cochran" as an entity for the example training data
 | |
|     ruler = EntityRuler(nlp)
 | |
|     patterns = [{"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]}]
 | |
|     ruler.add_patterns(patterns)
 | |
|     nlp.add_pipe(ruler)
 | |
| 
 | |
|     # Convert the texts to docs to make sure we have doc.ents set for the training examples
 | |
|     TRAIN_DOCS = []
 | |
|     for text, annotation in TRAIN_DATA:
 | |
|         doc = nlp(text)
 | |
|         annotation_clean = annotation
 | |
|         TRAIN_DOCS.append((doc, annotation_clean))
 | |
| 
 | |
|     # create artificial KB - assign same prior weight to the two russ cochran's
 | |
|     # Q2146908 (Russ Cochran): American golfer
 | |
|     # Q7381115 (Russ Cochran): publisher
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3)
 | |
|     mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
 | |
|     mykb.add_entity(entity="Q7381115", freq=12, entity_vector=[9, 1, -7])
 | |
|     mykb.add_alias(alias="Russ Cochran", entities=["Q2146908", "Q7381115"], probabilities=[0.5, 0.5])
 | |
| 
 | |
|     # Create the Entity Linker component and add it to the pipeline
 | |
|     entity_linker = nlp.create_pipe("entity_linker", config={"kb": mykb})
 | |
|     nlp.add_pipe(entity_linker, last=True)
 | |
| 
 | |
|     # train the NEL pipe
 | |
|     optimizer = nlp.begin_training()
 | |
|     for i in range(50):
 | |
|         losses = {}
 | |
|         nlp.update(TRAIN_DOCS, sgd=optimizer, losses=losses)
 | |
|     assert losses["entity_linker"] < 0.001
 | |
| 
 | |
|     # test the trained model
 | |
|     predictions = []
 | |
|     for text, annotation in TRAIN_DATA:
 | |
|         doc = nlp(text)
 | |
|         for ent in doc.ents:
 | |
|             predictions.append(ent.kb_id_)
 | |
|     assert predictions == GOLD_entities
 | |
| 
 | |
|     # Also test the results are still the same after IO
 | |
|     with make_tempdir() as tmp_dir:
 | |
|         nlp.to_disk(tmp_dir)
 | |
|         nlp2 = util.load_model_from_path(tmp_dir)
 | |
|         predictions = []
 | |
|         for text, annotation in TRAIN_DATA:
 | |
|             doc2 = nlp2(text)
 | |
|             for ent in doc2.ents:
 | |
|                 predictions.append(ent.kb_id_)
 | |
|         assert predictions == GOLD_entities
 |